17,864 research outputs found

    Continuous coordination as a realistic scenario for lifelong learning

    Full text link
    Les algorithmes actuels d'apprentissage profond par renforcement (RL) sont encore très spécifiques à leur tâche et n'ont pas la capacité de généraliser à de nouveaux environnements. L'apprentissage tout au long de la vie (LLL), cependant, vise à résoudre plusieurs tâches de manière séquentielle en transférant et en utilisant efficacement les connaissances entre les tâches. Malgré un regain d'intérêt pour le RL tout au long de la vie ces dernières années, l'absence d'un banc de test réaliste rend difficile une évaluation robuste des algorithmes d'apprentissage tout au long de la vie. Le RL multi-agents (MARL), d'autre part, peut être considérée comme un scénario naturel pour le RL tout au long de la vie en raison de sa non-stationnarité inhérente, puisque les politiques des agents changent avec le temps. Dans cette thèse, nous présentons un banc de test multi-agents d'apprentissage tout au long de la vie qui prend en charge un paramétrage à la fois zéro et quelques-coups. Notre configuration est basée sur Hanabi - un jeu multi-agents partiellement observable et entièrement coopératif qui s'est avéré difficile pour la coordination zéro coup. Son vaste espace stratégique en fait un environnement souhaitable pour les tâches RL tout au long de la vie. Nous évaluons plusieurs méthodes MARL récentes et comparons des algorithmes d'apprentissage tout au long de la vie de pointe dans des régimes de mémoire et de calcul limités pour faire la lumière sur leurs forces et leurs faiblesses. Ce paradigme d'apprentissage continu nous fournit également une manière pragmatique d'aller au-delà de la formation centralisée qui est le protocole de formation le plus couramment utilisé dans MARL. Nous montrons empiriquement que les agents entraînés dans notre environnement sont capables de bien se coordonner avec des agents inconnus, sans aucune hypothèse supplémentaire faite par des travaux précédents. Mots-clés: le RL multi-agents, l'apprentissage tout au long de la vie.Current deep reinforcement learning (RL) algorithms are still highly task-specific and lack the ability to generalize to new environments. Lifelong learning (LLL), however, aims at solving multiple tasks sequentially by efficiently transferring and using knowledge between tasks. Despite a surge of interest in lifelong RL in recent years, the lack of a realistic testbed makes robust evaluation of lifelong learning algorithms difficult. Multi-agent RL (MARL), on the other hand, can be seen as a natural scenario for lifelong RL due to its inherent non-stationarity, since the agents' policies change over time. In this thesis, we introduce a multi-agent lifelong learning testbed that supports both zero-shot and few-shot settings. Our setup is based on Hanabi --- a partially-observable, fully cooperative multi-agent game that has been shown to be challenging for zero-shot coordination. Its large strategy space makes it a desirable environment for lifelong RL tasks. We evaluate several recent MARL methods, and benchmark state-of-the-art lifelong learning algorithms in limited memory and computation regimes to shed light on their strengths and weaknesses. This continual learning paradigm also provides us with a pragmatic way of going beyond centralized training which is the most commonly used training protocol in MARL. We empirically show that the agents trained in our setup are able to coordinate well with unknown agents, without any additional assumptions made by previous works. Key words: multi-agent reinforcement learning, lifelong learning

    An Introduction to Advanced Machine Learning : Meta Learning Algorithms, Applications and Promises

    Get PDF
    In [1, 2], we have explored the theoretical aspects of feature extraction optimization processes for solving largescale problems and overcoming machine learning limitations. Majority of optimization algorithms that have been introduced in [1, 2] guarantee the optimal performance of supervised learning, given offline and discrete data, to deal with curse of dimensionality (CoD) problem. These algorithms, however, are not tailored for solving emerging learning problems. One of the important issues caused by online data is lack of sufficient samples per class. Further, traditional machine learning algorithms cannot achieve accurate training based on limited distributed data, as data has proliferated and dispersed significantly. Machine learning employs a strict model or embedded engine to train and predict which still fails to learn unseen classes and sufficiently use online data. In this chapter, we introduce these challenges elaborately. We further investigate Meta-Learning (MTL) algorithm, and their application and promises to solve the emerging problems by answering how autonomous agents can learn to learn?

    Mnemonics training: Multi-class incremental learning without forgetting

    Get PDF
    Multi-Class Incremental Learning (MCIL) aims to learn new concepts by incrementally updating a model trained on previous concepts. However, there is an inherent trade-off to effectively learning new concepts without catastrophic forgetting of previous ones. To alleviate this issue, it has been proposed to keep around a few examples of the previous concepts but the effectiveness of this approach heavily depends on the representativeness of these examples. This paper proposes a novel and automatic framework we call mnemonics, where we parameterize exemplars and make them optimizable in an end-to-end manner. We train the framework through bilevel optimizations, i.e., model-level and exemplar-level. We conduct extensive experiments on three MCIL benchmarks, CIFAR-100, ImageNet-Subset and ImageNet, and show that using mnemonics exemplars can surpass the state-of-the-art by a large margin. Interestingly and quite intriguingly, the mnemonics exemplars tend to be on the boundaries between different classes.Comment: Experiment results updated (different from the conference version). Code is available at https://github.com/yaoyao-liu/mnemonics-trainin

    EMO: Episodic Memory Optimization for Few-Shot Meta-Learning

    Full text link
    Few-shot meta-learning presents a challenge for gradient descent optimization due to the limited number of training samples per task. To address this issue, we propose an episodic memory optimization for meta-learning, we call \emph{EMO}, which is inspired by the human ability to recall past learning experiences from the brain's memory. EMO retains the gradient history of past experienced tasks in external memory, enabling few-shot learning in a memory-augmented way. By learning to retain and recall the learning process of past training tasks, EMO nudges parameter updates in the right direction, even when the gradients provided by a limited number of examples are uninformative. We prove theoretically that our algorithm converges for smooth, strongly convex objectives. EMO is generic, flexible, and model-agnostic, making it a simple plug-and-play optimizer that can be seamlessly embedded into existing optimization-based few-shot meta-learning approaches. Empirical results show that EMO scales well with most few-shot classification benchmarks and improves the performance of optimization-based meta-learning methods, resulting in accelerated convergence.Comment: Accepted by CoLLAs 202
    • …
    corecore