3,351 research outputs found

    Calculus of Tangent Sets and Derivatives of Set Valued Maps under Metric Subregularity Conditions

    Full text link
    In this paper we intend to give some calculus rules for tangent sets in the sense of Bouligand and Ursescu, as well as for corresponding derivatives of set-valued maps. Both first and second order objects are envisaged and the assumptions we impose in order to get the calculus are in terms of metric subregularity of the assembly of the initial data. This approach is different from those used in alternative recent papers in literature and allows us to avoid compactness conditions. A special attention is paid for the case of perturbation set-valued maps which appear naturally in optimization problems.Comment: 17 page

    Controllability and Observability of Control Systems under Uncertainty

    Get PDF
    This report surveys the results of nonlinear systems theory (controllability and observability) obtained at IIASA during the last three summers. Classical methods based on differential geometry require some regularity and fail as soon as state-dependent constraints are brought to bear on the controls, or uncertainty and disturbances are involved in the system. Since these important features appear in most realistic control problems, new methods had to be devised, which encompass the classical ones, and allow the presence of a priori feedback into the control systems. This is now possible thanks to new tools, in the development of which IIASA played an important role: differential inclusions and set-valued analysis

    Generalized Newton's Method based on Graphical Derivatives

    Get PDF
    This paper concerns developing a numerical method of the Newton type to solve systems of nonlinear equations described by nonsmooth continuous functions. We propose and justify a new generalized Newton algorithm based on graphical derivatives, which have never been used to derive a Newton-type method for solving nonsmooth equations. Based on advanced techniques of variational analysis and generalized differentiation, we establish the well-posedness of the algorithm, its local superlinear convergence, and its global convergence of the Kantorovich type. Our convergence results hold with no semismoothness assumption, which is illustrated by examples. The algorithm and main results obtained in the paper are compared with well-recognized semismooth and BB-differentiable versions of Newton's method for nonsmooth Lipschitzian equations
    corecore