6,473 research outputs found

    Assessing the utility of geospatial technologies to investigate environmental change within lake systems

    Get PDF
    Over 50% of the world's population live within 3. km of rivers and lakes highlighting the on-going importance of freshwater resources to human health and societal well-being. Whilst covering c. 3.5% of the Earth's non-glaciated land mass, trends in the environmental quality of the world's standing waters (natural lakes and reservoirs) are poorly understood, at least in comparison with rivers, and so evaluation of their current condition and sensitivity to change are global priorities. Here it is argued that a geospatial approach harnessing existing global datasets, along with new generation remote sensing products, offers the basis to characterise trajectories of change in lake properties e.g., water quality, physical structure, hydrological regime and ecological behaviour. This approach furthermore provides the evidence base to understand the relative importance of climatic forcing and/or changing catchment processes, e.g. land cover and soil moisture data, which coupled with climate data provide the basis to model regional water balance and runoff estimates over time. Using examples derived primarily from the Danube Basin but also other parts of the World, we demonstrate the power of the approach and its utility to assess the sensitivity of lake systems to environmental change, and hence better manage these key resources in the future

    Potential of using remote sensing techniques for global assessment of water footprint of crops

    Get PDF
    Remote sensing has long been a useful tool in global applications, since it provides physically-based, worldwide, and consistent spatial information. This paper discusses the potential of using these techniques in the research field of water management, particularly for ‘Water Footprint’ (WF) studies. The WF of a crop is defined as the volume of water consumed for its production, where green and blue WF stand for rain and irrigation water usage, respectively. In this paper evapotranspiration, precipitation, water storage, runoff and land use are identified as key variables to potentially be estimated by remote sensing and used for WF assessment. A mass water balance is proposed to calculate the volume of irrigation applied, and green and blue WF are obtained from the green and blue evapotranspiration components. The source of remote sensing data is described and a simplified example is included, which uses evapotranspiration estimates from the geostationary satellite Meteosat 9 and precipitation estimates obtained with the Climatic Prediction Center Morphing Technique (CMORPH). The combination of data in this approach brings several limitations with respect to discrepancies in spatial and temporal resolution and data availability, which are discussed in detail. This work provides new tools for global WF assessment and represents an innovative approach to global irrigation mapping, enabling the estimation of green and blue water use

    Temporal variability corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) surface soil moisture: case study in Little River Region, Georgia, U. S.

    Get PDF
    Statistical correction methods, the Cumulative Distribution Function (CDF) matching technique and Regional Statistics Method (RSM) are applied to adjust the limited temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data using the Common Land Model (CLM). The temporal variability adjustment between CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the Little River region, GA. The results showed that the statistical correction techniques improved AMSR-E\u27s limited temporal variability as compared to ground-based measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 0.971 and -0.005 for the non-growing season. The R-2 values also modestly improved. The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) products were able to identify periods having an attenuated microwave brightness signal that are not likely to benefit from these statistical correction techniques

    Temporal Variability Corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) Surface Soil Moisture: Case Study in Little River Region, Georgia, U.S.

    Get PDF
    Statistical correction methods, the Cumulative Distribution Function (CDF) matching technique and Regional Statistics Method (RSM) are applied to adjust the limited temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data using the Common Land Model (CLM). The temporal variability adjustment between CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the Little River region, GA. The results showed that the statistical correction techniques improved AMSR-E’s limited temporal variability as compared to ground-based measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 0.971 and -0.005 for the non-growing season. The R2 values also modestly improved. The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) products were able to identify periods having an attenuated microwave brightness signal that are not likely to benefit from these statistical correction techniques

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE land-surface model over the Iberian Peninsula

    Get PDF
    The aim of this study is to compare the surface soil moisture (SSM) retrieved from ESA's Soil Moisture and Ocean Salinity mission (SMOS) with the output of the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEm) land surface model forced with two distinct atmospheric data sets for the period 2010 to 2012. The comparison methodology is first established over the REMEDHUS (Red de Estaciones de MEDición de la Humedad def Suelo) soil moisture measurement network, a 30 by 40. km catchment located in the central part of the Duero basin, then extended to the whole Iberian Peninsula (IP). The temporal correlation between the in-situ, remotely sensed and modelled SSM are satisfactory (r. >. 0.8). The correlation between remotely sensed and modelled SSM also holds when computed over the IP. Still, by using spectral analysis techniques, important disagreements in the effective inertia of the corresponding moisture reservoir are found. This is reflected in the spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates, which is poor (¿. ~. 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products.Peer ReviewedPostprint (published version

    Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations

    Get PDF
    Soil moisture (SM) is an important component of the Earth’s surface water balance and by extension the energy balance, regulating the land surface temperature (LST) and evapotranspiration (ET). Nowadays, there are two missions dedicated to monitoring the Earth’s surface SM using L-band radiometers: ESA’s Soil Moisture and Ocean Salinity (SMOS) and NASA’s Soil Moisture Active Passive (SMAP). LST is remotely sensed using thermal infrared (TIR) sensors on-board satellites, such as NASA’s Terra/Aqua MODIS or ESA & EUMETSAT’s MSG SEVIRI. This study provides an assessment of SM and LST dynamics at daily and seasonal scales, using 4 years (2011–2014) of in situ and satellite observations over the central part of the river Duero basin in Spain. Specifically, the agreement of instantaneous SM with a variety of LST-derived parameters is analyzed to better understand the fundamental link of the SM–LST relationship through ET and thermal inertia. Ground-based SM and LST measurements from the REMEDHUS network are compared to SMOS SM and MODIS LST spaceborne observations. ET is obtained from the HidroMORE regional hydrological model. At the daily scale, a strong anticorrelation is observed between in situ SM and maximum LST (R ˜ -0.6 to -0.8), and between SMOS SM and MODIS LST Terra/Aqua day (R ˜ - 0.7). At the seasonal scale, results show a stronger anticorrelation in autumn, spring and summer (in situ R ˜ -0.5 to -0.7; satellite R ˜ -0.4 to -0.7) indicating SM–LST coupling, than in winter (in situ R ˜ +0.3; satellite R ˜ -0.3) indicating SM–LST decoupling. These different behaviors evidence changes from water-limited to energy-limited moisture flux across seasons, which are confirmed by the observed ET evolution. In water-limited periods, SM is extracted from the soil through ET until critical SM is reached. A method to estimate the soil critical SM is proposed. For REMEDHUS, the critical SM is estimated to be ~0.12 m3/m3 , stable over the study period and consistent between in situ and satellite observations. A better understanding of the SM–LST link could not only help improving the representation of LST in current hydrological and climate prediction models, but also refining SM retrieval or microwave-optical disaggregation algorithms, related to ET and vegetation status.Peer ReviewedPostprint (published version

    Impact of day/night time land surface temperature in soil moisture disaggregation algorithms

    Get PDF
    Since its launch in 2009, the ESA’s SMOS mission is providing global soil moisture (SM) maps at ~40 km, using the first L-band microwave radiometer on space. Its spatial resolution meets the needs of global applications, but prevents the use of the data in regional or local applications, which require higher spatial resolutions (~1-10 km). SM disaggregation algorithms based generally on the land surface temperature (LST) and vegetation indices have been developed to bridge this gap. This study analyzes the SM-LST relationship at a variety of LST acquisition times and its influence on SM disaggregation algorithms. Two years of in situ and satellite data over the central part of the river Duero basin and the Iberian Peninsula are used. In situ results show a strong anticorrelation of SM to daily maximum LST (R˜-0.5 to -0.8). This is confirmed with SMOS SM and MODIS LST Terra/Aqua at day time-overpasses (R˜-0.4 to -0.7). Better statistics are obtained when using MODIS LST day (R˜0.55 to 0.85; ubRMSD˜0.04 to 0.06 m3 /m3 ) than LST night (R˜0.45 to 0.80; ubRMSD˜0.04 to 0.07 m3 /m3 ) in the SM disaggregation. An averaged ensemble of day and night MODIS LST Terra/Aqua disaggregated SM estimates also leads to robust statistics (R˜0.55 to 0.85; ubRMSD˜0.04 to 0.07 m3 /m3 ) with a coverage improvement of ~10-20 %.Peer ReviewedPostprint (published version

    Hydrologic and Agricultural Earth Observations and Modeling for the Water-Food Nexus

    Get PDF
    In a globalizing and rapidly-developing world, reliable, sustainable access to water and food are inextricably linked to each other and basic human rights. Achieving security and sustainability in both requires recognition of these linkages, as well as continued innovations in both science and policy. We present case studies of how Earth observations are being used in applications at the nexus of water and food security: crop monitoring in support of G20 global market assessments, water stress early warning for USAID, soil moisture monitoring for USDA's Foreign Agricultural Service, and identifying food security vulnerabilities for climate change assessments for the UN and the UK international development agency. These case studies demonstrate that Earth observations are essential for providing the data and scalability to monitor relevant indicators across space and time, as well as understanding agriculture, the hydrological cycle, and the water-food nexus. The described projects follow the guidelines for co-developing useable knowledge for sustainable development policy. We show how working closely with stakeholders is essential for transforming NASA Earth observations into accurate, timely, and relevant information for water-food nexus decision support. We conclude with recommendations for continued efforts in using Earth observations for addressing the water-food nexus and the need to incorporate the role of energy for improved food and water security assessment
    corecore