326 research outputs found

    A model for the fragmentation kinetics of crumpled thin sheets

    Full text link
    As a confined thin sheet crumples, it spontaneously segments into flat facets delimited by a network of ridges. Despite the apparent disorder of this process, statistical properties of crumpled sheets exhibit striking reproducibility. Experiments have shown that the total crease length accrues logarithmically when repeatedly compacting and unfolding a sheet of paper. Here, we offer insight to this unexpected result by exploring the correspondence between crumpling and fragmentation processes. We identify a physical model for the evolution of facet area and ridge length distributions of crumpled sheets, and propose a mechanism for re-fragmentation driven by geometric frustration. This mechanism establishes a feedback loop in which the facet size distribution informs the subsequent rate of fragmentation under repeated confinement, thereby producing a new size distribution. We then demonstrate the capacity of this model to reproduce the characteristic logarithmic scaling of total crease length, thereby supplying a missing physical basis for the observed phenomenon.Comment: 11 pages, 7 figures (+ Supplemental Materials: 15 pages, 9 figures); introduced a simpler approximation to model, key results unchanged; added references, expanded supplementary information, corrected Fig. 2 and revised Figs. 4 and 7 for clearer presentation of result

    Descriptive temporal template features for visual motion recognition

    Get PDF
    In this paper, a human action recognition system is proposed. The system is based on new, descriptive `temporal template' features in order to achieve high-speed recognition in real-time, embedded applications. The limitations of the well known `Motion History Image' (MHI) temporal template are addressed and a new `Motion History Histogram' (MHH) feature is proposed to capture more motion information in the video. MHH not only provides rich motion information, but also remains computationally inexpensive. To further improve classification performance, we combine both MHI and MHH into a low dimensional feature vector which is processed by a support vector machine (SVM). Experimental results show that our new representation can achieve a significant improvement in the performance of human action recognition over existing comparable methods, which use 2D temporal template based representations

    Teaching operating system concepts using multimedia and internet

    Get PDF
    The prime objective of the thesis is to research and demonstrate the benefits and advantages of using Internet and multimedia tools for an interactive educational leaning experience. As we speak Internet is developing as a mainstream communication medium via personal computer as a tool at a breathtaking speed. The information technology field is a prime reason behind such phenomenon as it continues to mature and expand. In what is described as the information age , the students of information technology need to master and devour new complex technological concepts and ideas at faster rate than ever before. The traditional approach using the textbooks is not feasible due to their static, linear and often colorless nature. So there is a tremendous need to develop an interactive, fun and yet detailed and challenging educational experience. In next several chapters, the solution is presented as to how to tackle such a challenge or task, by using the Operating System concepts, specifically using Memory Management concepts as a case study. The concepts include topics such as logical vs. physical address space, etc

    Structure of a bacterial type III secretion system in contact with a host membrane in situ

    Get PDF
    Many bacterial pathogens of animals and plants use a conserved type III secretion system (T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host functions. Contact with host membranes is critical for T3SS activation, yet little is known about T3SS architecture in this state or the conformational changes that drive effector translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence of host membrane contact. Comparison of the averaged structures demonstrates a marked compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform– ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human pathogen engaged with a eukaryotic host, and reveal striking ‘pump-action’ conformational changes that underpin effector injection

    Approximate nearest neighbors for recognition of foreground and background in images and video

    Get PDF
    Problems in image matching, saliency detection in images, and background detection in video are studied. Algorithms based on approximate nearest-neighbor matching are proposed to solve problems in these related domains. Image patches are quantized into features using a special Walsh-Hadamard transform, and put into a propagation-assisted kd-tree for indexing and search. Image saliency and background-detection algorithms are then derived by looking at patch similarity over time and space

    Development of an ultrasonically excited recoating process in laser powder bed fusion to process non-spreadable 316L powder

    Get PDF
    Part quality in laser powder bed fusion is influenced by the uniformity and density of the powder layer. As a result, requirements for the powder regarding spreadability and flowability are restrictive. Many researchers reported recoating defects for cohesive and agglomerating powders. However, the processing of such powders is highly desirable since e.g. surface roughness can be reduced. Therefore, we propose a novel ultrasonically excited recoater system to process such powder. In order to qualify the new recoater system, five different geometries with various amplitudes and recoating velocities were evaluated and compared to a conventional system. The defect rate, determined with a camera and AI-based analysis, the deposited mass and segregation along the recoated distance and the powder layer density of the resulting powder bed were analyzed. A process window and optimal geometry could be identified. It was possible to reduce segregation to a minimum, while maintaining a smooth, dense layer
    corecore