127 research outputs found

    Supervised regionalization methods, a survey.

    Get PDF
    This paper reviews almost four decades of contributions on the subject of supervised regionalization methods. These methods aggregate a set of areas into a predefined number of spatially contiguous regions while optimizing certain aggregation criteria. The authors present a taxonomic scheme that classifies a wide range of regionalization methods into eight groups, based on the strategy applied for satisfying the spatial contiguity constraint. The paper concludes by providing a qualitative comparison of these groups in terms of a set of certain characteristics, and by suggesting future lines of research for extending and improving these methods.regionalization, constrained clustering, analytical regions.

    BARD: Better Automated Redistricting

    Get PDF
    BARD is the first (and at time of writing, only) open source software package for general redistricting and redistricting analysis. BARD provides methods to create, display, compare, edit, automatically refine, evaluate, and profile political districting plans. BARD aims to provide a framework for scientific analysis of redistricting plans and to facilitate wider public participation in the creation of new plans. BARD facilitates map creation and refinement through command-line, graphical user interface, and automatic methods. Since redistricting is a computationally complex partitioning problem not amenable to an exact optimization solution, BARD implements a variety of selectable metaheuristics that can be used to refine existing or randomly-generated redistricting plans based on user-determined criteria. Furthermore, BARD supports automated generation of redistricting plans and profiling of plans by assigning different weights to various criteria, such as district compactness or equality of population. This functionality permits exploration of trade-offs among criteria. The intent of a redistricting authority may be explored by examining these trade-offs and inferring which reasonably observable plans were not adopted. Redistricting is a computationally-intensive problem for even modest-sized states. Performance is thus an important consideration in BARD's design and implementation. The program implements performance enhancements such as evaluation caching, explicit memory management, and distributed computing across snow clusters.

    The political districting problem: A survey

    Get PDF
    Computer scientists and social scientists consider the political districting problem from different viewpoints. This paper gives an overview of both strands of the literature on districting in which the connections and the differences between the two approaches are highlighted

    Supervised regionalization methods: A survey

    Get PDF
    This paper reviews almost four decades of contributions on the subject of supervised regionalization methods. These methods aggregate a set of areas into a predefined number of spatially contiguous regions while optimizing certain aggregation criteria. The authors present a taxonomic scheme that classifies a wide range of regionalization methods into eight groups, based on the strategy applied for satisfying the spatial contiguity constraint. The paper concludes by providing a qualitative comparison of these groups in terms of a set of certain characteristics, and by suggesting future lines of research for extending and improving these methods

    BARD: Better Automated Redistricting

    Get PDF
    BARD is the first (and at time of writing, only) open source software package for general redistricting and redistricting analysis. BARD provides methods to create, display, compare, edit, automatically refine, evaluate, and profile political districting plans. BARD aims to provide a framework for scientific analysis of redistricting plans and to facilitate wider public participation in the creation of new plans. BARD facilitates map creation and refinement through command-line, graphical user interface, and automatic methods. Since redistricting is a computationally complex partitioning problem not amenable to an exact optimization solution, BARD implements a variety of selectable metaheuristics that can be used to refine existing or randomly-generated redistricting plans based on user-determined criteria. Furthermore, BARD supports automated generation of redistricting plans and profiling of plans by assigning different weights to various criteria, such as district compactness or equality of population. This functionality permits exploration of trade-offs among criteria. The intent of a redistricting authority may be explored by examining these trade-offs and inferring which reasonably observable plans were not adopted. Redistricting is a computationally-intensive problem for even modest-sized states. Performance is thus an important consideration in BARD's design and implementation. The program implements performance enhancements such as evaluation caching, explicit memory management, and distributed computing across snow clusters

    Design of Homogeneous Territorial Units: A Methodological Proposal

    Get PDF
    One of the main questions to solve when analysing geographically added information consists of the design of territorial units adjusted to the objectives of the study. This is related with the reduction of the effects of the Modifiable Areal Unit Problem (MAUP). In this paper an optimisation model to solve regionalisation problems is proposed. This model seeks to reduce some disadvantages found in previous works about automated regionalisation tools.contiguity constraint, zone design, optimisation, modifiable areal unit problem

    On Empirical Validation of Compactness Measures for Electoral Redistricting and Its Significance for Application of Models in the Social Sciences

    Get PDF
    Use of optimization models in science and policy applications is often problematic because the best available models are very inaccurate representations of the originating problems. Such is the case with electoral districting models, for which there exist no generally accepted measures of compactness, in spite of many proposals and much analytical study. This article reports on an experimental investigation of subjective judgments of compactness for electoral districts. The experiment draws on a unique database of 116 distinct, legally valid districting plans for the Philadelphia City Council, discovered with evolutionary computation. Subjects in the experiment displayed, in the aggregate, remarkable agreement with several standard measures of compactness, thus providing warrant for use of these measures that has heretofore been unavailable. The exercise also lends support to the underlying methodology on display here, which proposes to use models based on subjective judgments in combination with algorithms that find multiple solutions in order to support application of optimization models in contexts in which they are only very approximate representations
    • 

    corecore