9,498 research outputs found

    The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism

    Get PDF
    The INTERSPEECH 2013 Computational Paralinguistics Challenge provides for the first time a unified test-bed for Social Signals such as laughter in speech. It further introduces conflict in group discussions as new tasks and picks up on autism and its manifestations in speech. Finally, emotion is revisited as task, albeit with a broader ranger of overall twelve emotional states. In this paper, we describe these four Sub-Challenges, Challenge conditions, baselines, and a new feature set by the openSMILE toolkit, provided to the participants. \em Bj\"orn Schuller1^1, Stefan Steidl2^2, Anton Batliner1^1, Alessandro Vinciarelli3,4^{3,4}, Klaus Scherer5^5}\\ {\em Fabien Ringeval6^6, Mohamed Chetouani7^7, Felix Weninger1^1, Florian Eyben1^1, Erik Marchi1^1, }\\ {\em Hugues Salamin3^3, Anna Polychroniou3^3, Fabio Valente4^4, Samuel Kim4^4

    Contextual Language Model Adaptation for Conversational Agents

    Full text link
    Statistical language models (LM) play a key role in Automatic Speech Recognition (ASR) systems used by conversational agents. These ASR systems should provide a high accuracy under a variety of speaking styles, domains, vocabulary and argots. In this paper, we present a DNN-based method to adapt the LM to each user-agent interaction based on generalized contextual information, by predicting an optimal, context-dependent set of LM interpolation weights. We show that this framework for contextual adaptation provides accuracy improvements under different possible mixture LM partitions that are relevant for both (1) Goal-oriented conversational agents where it's natural to partition the data by the requested application and for (2) Non-goal oriented conversational agents where the data can be partitioned using topic labels that come from predictions of a topic classifier. We obtain a relative WER improvement of 3% with a 1-pass decoding strategy and 6% in a 2-pass decoding framework, over an unadapted model. We also show up to a 15% relative improvement in recognizing named entities which is of significant value for conversational ASR systems.Comment: Interspeech 2018 (accepted

    An integrated architecture for shallow and deep processing

    Get PDF
    We present an architecture for the integration of shallow and deep NLP components which is aimed at flexible combination of different language technologies for a range of practical current and future applications. In particular, we describe the integration of a high-level HPSG parsing system with different high-performance shallow components, ranging from named entity recognition to chunk parsing and shallow clause recognition. The NLP components enrich a representation of natural language text with layers of new XML meta-information using a single shared data structure, called the text chart. We describe details of the integration methods, and show how information extraction and language checking applications for realworld German text benefit from a deep grammatical analysis

    On virtual partitioning of large dictionaries for contextual post-processing to improve character recognition

    Get PDF
    This paper presents a new approach to the partitioning of large dictionaries by virtual views. The basic idea is that additional knowledge sources of text recognition and text analysis are employed for fast dictionary look-up in order to prune search space through static or dynamic views. The heart of the system is a redundant hashing technique which involves a set of hash functions dealing with noisy input efficiently. Currently, the system is composed of two main system components: the dictionary generator and the dictionary controller. While the dictionary generator initially builds the system by using profiles and source dictionaries, the controller allows the flexible integration of different search heuristics. Results prove that our system achieves a respectable speed-up of dictionary access time

    Identifying hidden contexts

    Get PDF
    In this study we investigate how to identify hidden contexts from the data in classification tasks. Contexts are artifacts in the data, which do not predict the class label directly. For instance, in speech recognition task speakers might have different accents, which do not directly discriminate between the spoken words. Identifying hidden contexts is considered as data preprocessing task, which can help to build more accurate classifiers, tailored for particular contexts and give an insight into the data structure. We present three techniques to identify hidden contexts, which hide class label information from the input data and partition it using clustering techniques. We form a collection of performance measures to ensure that the resulting contexts are valid. We evaluate the performance of the proposed techniques on thirty real datasets. We present a case study illustrating how the identified contexts can be used to build specialized more accurate classifiers

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed
    corecore