2,071 research outputs found

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Autonomous Exploration over Continuous Domains

    Get PDF
    Motion planning is an essential aspect of robot autonomy, and as such it has been studied for decades, producing a wide range of planning methodologies. Path planners are generally categorised as either trajectory optimisers or sampling-based planners. The latter is the predominant planning paradigm as it can resolve a path efficiently while explicitly reasoning about path safety. Yet, with a limited budget, the resulting paths are far from optimal. In contrast, state-of-the-art trajectory optimisers explicitly trade-off between path safety and efficiency to produce locally optimal paths. However, these planners cannot incorporate updates from a partially observed model such as an occupancy map and fail in planning around information gaps caused by incomplete sensor coverage. Autonomous exploration adds another twist to path planning. The objective of exploration is to safely and efficiently traverse through an unknown environment in order to map it. The desired output of such a process is a sequence of paths that efficiently and safely minimise the uncertainty of the map. However, optimising over the entire space of trajectories is computationally intractable. Therefore, most exploration algorithms relax the general formulation by optimising a simpler one, for example finding the single next best view, resulting in suboptimal performance. This thesis investigates methodologies for optimal and safe exploration over continuous paths. Contrary to existing exploration algorithms that break exploration into independent sub-problems of finding goal points and planning safe paths to these points, our holistic approach simultaneously optimises the coupled problems of where and how to explore. Thus, offering a shift in paradigm from next best view to next best path. With exploration defined as an optimisation problem over continuous paths, this thesis explores two different optimisation paradigms; Bayesian and functional

    PERFORMANCE EVALUATION AND REVIEW FRAMEWORK OF ROBOTIC MISSIONS (PERFORM): AUTONOMOUS PATH PLANNING AND AUTONOMY PERFORMANCE EVALUATION

    Get PDF
    The scope of this work spans two main areas of autonomy research 1) autonomous path planning and 2) test and evaluation of autonomous systems. Path planning is an integral part of autonomous decision-making, and a deep understanding in this area provides valuable perspective on approaching the problem of how to effectively evaluate vehicle behavior. Autonomous decision-making capabilities must include reliability, robustness, and trustworthiness in a real-world environment. A major component of robot decision-making lies in intelligent path-planning. Serving as the brains of an autonomous system, an efficient and reliable path planner is crucial to mission success and overall safety. A hybrid global and local planner is implemented using a combination of the Potential Field Method (PFM) and A-star (A*) algorithms. Created using a layered vector field strategy, this allows for flexibility along with the ability to add and remove layers to take into account other parameters such as currents, wind, dynamics, and the International Regulations for Preventing Collisions at Sea (COLGREGS). Different weights can be attributed to each layer based on the determined level of importance in a hierarchical manner. Different obstacle scenarios are shown in simulation, and proof-of-concept validation of the path-planning algorithms on an actual ASV is accomplished in an indoor environment. Results show that the combination of PFM and A* complement each other to generate a successfully planned path to goal that alleviates local minima and entrapment issues. Additionally, the planner demonstrates the ability to update for new obstacles in real time using an obstacle detection sensor. Regarding test and evaluation of autonomous vehicles, trust and confidence in autonomous behavior is required to send autonomous vehicles into operational missions. The author introduces the Performance Evaluation and Review Framework Of Robotic Missions (PERFORM), a framework for which to enable a rigorous and replicable autonomy test environment, thereby filling the void between that of merely simulating autonomy and that of completing true field missions. A generic architecture for defining the missions under test is proposed and a unique Interval Type-2 Fuzzy Logic approach is used as the foundation for the mathematically rigorous autonomy evaluation framework. The test environment is designed to aid in (1) new technology development (i.e. providing direct comparisons and quantitative evaluations of varying autonomy algorithms), (2) the validation of the performance of specific autonomous platforms, and (3) the selection of the appropriate robotic platform(s) for a given mission type (e.g. for surveying, surveillance, search and rescue). Several case studies are presented to apply the metric to various test scenarios. Results demonstrate the flexibility of the technique with the ability to tailor tests to the user’s design requirements accounting for different priorities related to acceptable risks and goals of a given mission
    • …
    corecore