12,709 research outputs found

    Learning Word Representations with Hierarchical Sparse Coding

    Full text link
    We propose a new method for learning word representations using hierarchical regularization in sparse coding inspired by the linguistic study of word meanings. We show an efficient learning algorithm based on stochastic proximal methods that is significantly faster than previous approaches, making it possible to perform hierarchical sparse coding on a corpus of billions of word tokens. Experiments on various benchmark tasks---word similarity ranking, analogies, sentence completion, and sentiment analysis---demonstrate that the method outperforms or is competitive with state-of-the-art methods. Our word representations are available at \url{http://www.ark.cs.cmu.edu/dyogatam/wordvecs/}

    Similarity-Based Models of Word Cooccurrence Probabilities

    Full text link
    In many applications of natural language processing (NLP) it is necessary to determine the likelihood of a given word combination. For example, a speech recognizer may need to determine which of the two word combinations ``eat a peach'' and ``eat a beach'' is more likely. Statistical NLP methods determine the likelihood of a word combination from its frequency in a training corpus. However, the nature of language is such that many word combinations are infrequent and do not occur in any given corpus. In this work we propose a method for estimating the probability of such previously unseen word combinations using available information on ``most similar'' words. We describe probabilistic word association models based on distributional word similarity, and apply them to two tasks, language modeling and pseudo-word disambiguation. In the language modeling task, a similarity-based model is used to improve probability estimates for unseen bigrams in a back-off language model. The similarity-based method yields a 20% perplexity improvement in the prediction of unseen bigrams and statistically significant reductions in speech-recognition error. We also compare four similarity-based estimation methods against back-off and maximum-likelihood estimation methods on a pseudo-word sense disambiguation task in which we controlled for both unigram and bigram frequency to avoid giving too much weight to easy-to-disambiguate high-frequency configurations. The similarity-based methods perform up to 40% better on this particular task.Comment: 26 pages, 5 figure

    Memory-Based Learning: Using Similarity for Smoothing

    Full text link
    This paper analyses the relation between the use of similarity in Memory-Based Learning and the notion of backed-off smoothing in statistical language modeling. We show that the two approaches are closely related, and we argue that feature weighting methods in the Memory-Based paradigm can offer the advantage of automatically specifying a suitable domain-specific hierarchy between most specific and most general conditioning information without the need for a large number of parameters. We report two applications of this approach: PP-attachment and POS-tagging. Our method achieves state-of-the-art performance in both domains, and allows the easy integration of diverse information sources, such as rich lexical representations.Comment: 8 pages, uses aclap.sty, To appear in Proc. ACL/EACL 9

    Better Word Embeddings by Disentangling Contextual n-Gram Information

    Full text link
    Pre-trained word vectors are ubiquitous in Natural Language Processing applications. In this paper, we show how training word embeddings jointly with bigram and even trigram embeddings, results in improved unigram embeddings. We claim that training word embeddings along with higher n-gram embeddings helps in the removal of the contextual information from the unigrams, resulting in better stand-alone word embeddings. We empirically show the validity of our hypothesis by outperforming other competing word representation models by a significant margin on a wide variety of tasks. We make our models publicly available.Comment: NAACL 201

    A Study of Metrics of Distance and Correlation Between Ranked Lists for Compositionality Detection

    Full text link
    Compositionality in language refers to how much the meaning of some phrase can be decomposed into the meaning of its constituents and the way these constituents are combined. Based on the premise that substitution by synonyms is meaning-preserving, compositionality can be approximated as the semantic similarity between a phrase and a version of that phrase where words have been replaced by their synonyms. Different ways of representing such phrases exist (e.g., vectors [1] or language models [2]), and the choice of representation affects the measurement of semantic similarity. We propose a new compositionality detection method that represents phrases as ranked lists of term weights. Our method approximates the semantic similarity between two ranked list representations using a range of well-known distance and correlation metrics. In contrast to most state-of-the-art approaches in compositionality detection, our method is completely unsupervised. Experiments with a publicly available dataset of 1048 human-annotated phrases shows that, compared to strong supervised baselines, our approach provides superior measurement of compositionality using any of the distance and correlation metrics considered
    • …
    corecore