214 research outputs found

    Exploiting context when learning to classify

    Get PDF
    This paper addresses the problem of classifying observations when features are context-sensitive, specifically when the testing set involves a context that is different from the training set. The paper begins with a precise definition of the problem, then general strategies are presented for enhancing the performance of classification algorithms on this type of problem. These strategies are tested on two domains. The first domain is the diagnosis of gas turbine engines. The problem is to diagnose a faulty engine in one context, such as warm weather, when the fault has previously been seen only in another context, such as cold weather. The second domain is speech recognition. The problem is to recognize words spoken by a new speaker, not represented in the training set. For both domains, exploiting context results in substantially more accurate classification

    The management of context-sensitive features: A review of strategies

    Get PDF
    In this paper, we review five heuristic strategies for handling context- sensitive features in supervised machine learning from examples. We discuss two methods for recovering lost (implicit) contextual information. We mention some evidence that hybrid strategies can have a synergetic effect. We then show how the work of several machine learning researchers fits into this framework. While we do not claim that these strategies exhaust the possibilities, it appears that the framework includes all of the techniques that can be found in the published literature on context-sensitive learning

    Adversarial robustness of deep learning enabled industry 4.0 prognostics

    Get PDF
    The advent of Industry 4.0 in automation and data exchange leads us toward a constant evolution in smart manufacturing environments, including extensive utilization of Internet-of-Things (IoT) and Deep Learning (DL). Specifically, the state-of-the-art Prognostics and Health Management (PHM) has shown great success in achieving a competitive edge in Industry 4.0 by reducing maintenance cost, downtime, and increasing productivity by making data-driven informed decisions. These state-of-the-art PHM systems employ IoT device data and DL algorithms to make informed decisions/predictions of Remaining Useful Life (RUL). Unfortunately, IoT sensors and DL algorithms, both are prone to cyber-attacks. For instance, deep learning algorithms are known for their susceptibility to adversarial examples. Such adversarial attacks have been extensively studied in the computer vision domain. However, it is surprising that their impact on the PHM domain is yet not explored. Thus, modern data-driven intelligent PHM systems pose a significant threat to safety- and cost-critical applications. Towards this, in this thesis, we propose a methodology to design adversarially robust PHM systems by analyzing the effect of different types of adversarial attacks on several DL enabled PHM models. More specifically, we craft adversarial attacks using Fast Gradient Sign Method (FGSM) and Basic Iterative Method (BIM) and evaluate their impact on Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), Bi-directional LSTM, and Multi-layer perceptron (MLP) based PHM models using the proposed methodology. The obtained results using NASA's turbofan engine, and a well-known battery PHM dataset show that these systems are vulnerable to adversarial attacks and can cause a serious defect in the RUL prediction. We also analyze the impact of adversarial training using the proposed methodology to enhance the adversarial robustness of the PHM systems. The obtained results show that adversarial training is successful in significantly improvising the robustness of these PHM models.Includes bibliographical references (pages 80-98)

    Remaining useful life estimation using Long Short-term Memory (LSTM) neural networks and deep fusion

    Get PDF
    • …
    corecore