1,241 research outputs found

    Modeling Multimodal Clues in a Hybrid Deep Learning Framework for Video Classification

    Full text link
    Videos are inherently multimodal. This paper studies the problem of how to fully exploit the abundant multimodal clues for improved video categorization. We introduce a hybrid deep learning framework that integrates useful clues from multiple modalities, including static spatial appearance information, motion patterns within a short time window, audio information as well as long-range temporal dynamics. More specifically, we utilize three Convolutional Neural Networks (CNNs) operating on appearance, motion and audio signals to extract their corresponding features. We then employ a feature fusion network to derive a unified representation with an aim to capture the relationships among features. Furthermore, to exploit the long-range temporal dynamics in videos, we apply two Long Short Term Memory networks with extracted appearance and motion features as inputs. Finally, we also propose to refine the prediction scores by leveraging contextual relationships among video semantics. The hybrid deep learning framework is able to exploit a comprehensive set of multimodal features for video classification. Through an extensive set of experiments, we demonstrate that (1) LSTM networks which model sequences in an explicitly recurrent manner are highly complementary with CNN models; (2) the feature fusion network which produces a fused representation through modeling feature relationships outperforms alternative fusion strategies; (3) the semantic context of video classes can help further refine the predictions for improved performance. Experimental results on two challenging benchmarks, the UCF-101 and the Columbia Consumer Videos (CCV), provide strong quantitative evidence that our framework achieves promising results: 93.1%93.1\% on the UCF-101 and 84.5%84.5\% on the CCV, outperforming competing methods with clear margins

    An end-to-end generative framework for video segmentation and recognition

    Full text link
    We describe an end-to-end generative approach for the segmentation and recognition of human activities. In this approach, a visual representation based on reduced Fisher Vectors is combined with a structured temporal model for recognition. We show that the statistical properties of Fisher Vectors make them an especially suitable front-end for generative models such as Gaussian mixtures. The system is evaluated for both the recognition of complex activities as well as their parsing into action units. Using a variety of video datasets ranging from human cooking activities to animal behaviors, our experiments demonstrate that the resulting architecture outperforms state-of-the-art approaches for larger datasets, i.e. when sufficient amount of data is available for training structured generative models.Comment: Proc. of IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Detect2Rank : Combining Object Detectors Using Learning to Rank

    Full text link
    Object detection is an important research area in the field of computer vision. Many detection algorithms have been proposed. However, each object detector relies on specific assumptions of the object appearance and imaging conditions. As a consequence, no algorithm can be considered as universal. With the large variety of object detectors, the subsequent question is how to select and combine them. In this paper, we propose a framework to learn how to combine object detectors. The proposed method uses (single) detectors like DPM, CN and EES, and exploits their correlation by high level contextual features to yield a combined detection list. Experiments on the PASCAL VOC07 and VOC10 datasets show that the proposed method significantly outperforms single object detectors, DPM (8.4%), CN (6.8%) and EES (17.0%) on VOC07 and DPM (6.5%), CN (5.5%) and EES (16.2%) on VOC10

    Multi-scale 3D Convolution Network for Video Based Person Re-Identification

    Full text link
    This paper proposes a two-stream convolution network to extract spatial and temporal cues for video based person Re-Identification (ReID). A temporal stream in this network is constructed by inserting several Multi-scale 3D (M3D) convolution layers into a 2D CNN network. The resulting M3D convolution network introduces a fraction of parameters into the 2D CNN, but gains the ability of multi-scale temporal feature learning. With this compact architecture, M3D convolution network is also more efficient and easier to optimize than existing 3D convolution networks. The temporal stream further involves Residual Attention Layers (RAL) to refine the temporal features. By jointly learning spatial-temporal attention masks in a residual manner, RAL identifies the discriminative spatial regions and temporal cues. The other stream in our network is implemented with a 2D CNN for spatial feature extraction. The spatial and temporal features from two streams are finally fused for the video based person ReID. Evaluations on three widely used benchmarks datasets, i.e., MARS, PRID2011, and iLIDS-VID demonstrate the substantial advantages of our method over existing 3D convolution networks and state-of-art methods.Comment: AAAI, 201

    GRAINS: Generative Recursive Autoencoders for INdoor Scenes

    Full text link
    We present a generative neural network which enables us to generate plausible 3D indoor scenes in large quantities and varieties, easily and highly efficiently. Our key observation is that indoor scene structures are inherently hierarchical. Hence, our network is not convolutional; it is a recursive neural network or RvNN. Using a dataset of annotated scene hierarchies, we train a variational recursive autoencoder, or RvNN-VAE, which performs scene object grouping during its encoding phase and scene generation during decoding. Specifically, a set of encoders are recursively applied to group 3D objects based on support, surround, and co-occurrence relations in a scene, encoding information about object spatial properties, semantics, and their relative positioning with respect to other objects in the hierarchy. By training a variational autoencoder (VAE), the resulting fixed-length codes roughly follow a Gaussian distribution. A novel 3D scene can be generated hierarchically by the decoder from a randomly sampled code from the learned distribution. We coin our method GRAINS, for Generative Recursive Autoencoders for INdoor Scenes. We demonstrate the capability of GRAINS to generate plausible and diverse 3D indoor scenes and compare with existing methods for 3D scene synthesis. We show applications of GRAINS including 3D scene modeling from 2D layouts, scene editing, and semantic scene segmentation via PointNet whose performance is boosted by the large quantity and variety of 3D scenes generated by our method.Comment: 21 pages, 26 figure

    Learning to Hash-tag Videos with Tag2Vec

    Full text link
    User-given tags or labels are valuable resources for semantic understanding of visual media such as images and videos. Recently, a new type of labeling mechanism known as hash-tags have become increasingly popular on social media sites. In this paper, we study the problem of generating relevant and useful hash-tags for short video clips. Traditional data-driven approaches for tag enrichment and recommendation use direct visual similarity for label transfer and propagation. We attempt to learn a direct low-cost mapping from video to hash-tags using a two step training process. We first employ a natural language processing (NLP) technique, skip-gram models with neural network training to learn a low-dimensional vector representation of hash-tags (Tag2Vec) using a corpus of 10 million hash-tags. We then train an embedding function to map video features to the low-dimensional Tag2vec space. We learn this embedding for 29 categories of short video clips with hash-tags. A query video without any tag-information can then be directly mapped to the vector space of tags using the learned embedding and relevant tags can be found by performing a simple nearest-neighbor retrieval in the Tag2Vec space. We validate the relevance of the tags suggested by our system qualitatively and quantitatively with a user study

    Action Classification and Highlighting in Videos

    Full text link
    Inspired by recent advances in neural machine translation, that jointly align and translate using encoder-decoder networks equipped with attention, we propose an attentionbased LSTM model for human activity recognition. Our model jointly learns to classify actions and highlight frames associated with the action, by attending to salient visual information through a jointly learned soft-attention networks. We explore attention informed by various forms of visual semantic features, including those encoding actions, objects and scenes. We qualitatively show that soft-attention can learn to effectively attend to important objects and scene information correlated with specific human actions. Further, we show that, quantitatively, our attention-based LSTM outperforms the vanilla LSTM and CNN models used by stateof-the-art methods. On a large-scale youtube video dataset, ActivityNet, our model outperforms competing methods in action classification

    PM-GANs: Discriminative Representation Learning for Action Recognition Using Partial-modalities

    Full text link
    Data of different modalities generally convey complimentary but heterogeneous information, and a more discriminative representation is often preferred by combining multiple data modalities like the RGB and infrared features. However in reality, obtaining both data channels is challenging due to many limitations. For example, the RGB surveillance cameras are often restricted from private spaces, which is in conflict with the need of abnormal activity detection for personal security. As a result, using partial data channels to build a full representation of multi-modalities is clearly desired. In this paper, we propose a novel Partial-modal Generative Adversarial Networks (PM-GANs) that learns a full-modal representation using data from only partial modalities. The full representation is achieved by a generated representation in place of the missing data channel. Extensive experiments are conducted to verify the performance of our proposed method on action recognition, compared with four state-of-the-art methods. Meanwhile, a new Infrared-Visible Dataset for action recognition is introduced, and will be the first publicly available action dataset that contains paired infrared and visible spectrum

    Visual Affordance and Function Understanding: A Survey

    Full text link
    Nowadays, robots are dominating the manufacturing, entertainment and healthcare industries. Robot vision aims to equip robots with the ability to discover information, understand it and interact with the environment. These capabilities require an agent to effectively understand object affordances and functionalities in complex visual domains. In this literature survey, we first focus on Visual affordances and summarize the state of the art as well as open problems and research gaps. Specifically, we discuss sub-problems such as affordance detection, categorization, segmentation and high-level reasoning. Furthermore, we cover functional scene understanding and the prevalent functional descriptors used in the literature. The survey also provides necessary background to the problem, sheds light on its significance and highlights the existing challenges for affordance and functionality learning.Comment: 26 pages, 22 image

    Rethinking Full Connectivity in Recurrent Neural Networks

    Full text link
    Recurrent neural networks (RNNs) are omnipresent in sequence modeling tasks. Practical models usually consist of several layers of hundreds or thousands of neurons which are fully connected. This places a heavy computational and memory burden on hardware, restricting adoption in practical low-cost and low-power devices. Compared to fully convolutional models, the costly sequential operation of RNNs severely hinders performance on parallel hardware. This paper challenges the convention of full connectivity in RNNs. We study structurally sparse RNNs, showing that they are well suited for acceleration on parallel hardware, with a greatly reduced cost of the recurrent operations as well as orders of magnitude less recurrent weights. Extensive experiments on challenging tasks ranging from language modeling and speech recognition to video action recognition reveal that structurally sparse RNNs achieve competitive performance as compared to fully-connected networks. This allows for using large sparse RNNs for a wide range of real-world tasks that previously were too costly with fully connected networks
    • …
    corecore