281 research outputs found

    Action recognition based on efficient deep feature learning in the spatio-temporal domain

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Hand-crafted feature functions are usually designed based on the domain knowledge of a presumably controlled environment and often fail to generalize, as the statistics of real-world data cannot always be modeled correctly. Data-driven feature learning methods, on the other hand, have emerged as an alternative that often generalize better in uncontrolled environments. We present a simple, yet robust, 2D convolutional neural network extended to a concatenated 3D network that learns to extract features from the spatio-temporal domain of raw video data. The resulting network model is used for content-based recognition of videos. Relying on a 2D convolutional neural network allows us to exploit a pretrained network as a descriptor that yielded the best results on the largest and challenging ILSVRC-2014 dataset. Experimental results on commonly used benchmarking video datasets demonstrate that our results are state-of-the-art in terms of accuracy and computational time without requiring any preprocessing (e.g., optic flow) or a priori knowledge on data capture (e.g., camera motion estimation), which makes it more general and flexible than other approaches. Our implementation is made available.Peer ReviewedPostprint (author's final draft

    Hardware for recognition of human activities: a review of smart home and AAL related technologies

    Get PDF
    Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard

    Intelligent technologies for the aging brain: opportunities and challenges

    Get PDF
    Intelligent computing is rapidly reshaping healthcare. In light of the global burden of population aging and neurological disorders, dementia and elderly care are among the healthcare sectors that are most likely to benefit from this technological revolution. Trends in artificial intelligence, robotics, ubiquitous computing, neurotechnology and other branches of biomedical engineering are progressively enabling novel opportunities for technology-enhanced care. These Intelligent Assistive Technologies (IATs) open the prospects of supporting older adults with neurocognitive disabilities, maintain their independence, reduce the burden on caregivers and delay the need for long-term care (1, 2). While technology develops fast, yet little knowledge is available to patients and health professionals about the current availability, applicability, and capability of existing IATs. This thesis proposes a state-of-the-art analysis of IATs in dementia and elderly care. Our findings indicate that advances in intelligent technology are resulting in a rapidly expanding number and variety of assistive solutions for older adults and people with neurocognitive disabilities. However, our analysis identifies a number of challenges that negatively affect the optimal deployment and uptake of IATs among target users and care institutions. These include design issues, sub-optimal approaches to product development, translational barriers between lab and clinics, lack of adequate validation and implementation, as well as data security and cyber-risk weaknesses. Additionally, in virtue of their technological novelty, intelligent technologies raise a number of Ethical, Legal and Social Implications (ELSI). Therefore, a significant portion of this thesis is devoted to providing an early ethical Technology Assessment (eTA) of intelligent technology, hence contributing to preparing the terrain for its safe and ethically responsible adoption. This assessment is primarily focused on intelligent technologies at the human-machine interface, as these applications enable an unprecedented exposure of the intimate dimension of individuals to the digital infosphere. Issues of privacy, integrity, equality, and dual-use were addressed at the level of stakeholder analysis, normative ethics and human-rights law. Finally, this thesis is aimed at providing evidence-based recommendations for guiding participatory and responsible development in intelligent technology, and delineating governance strategies that maximize the clinical benefits of IATs for the aging world, while minimizing unintended risks

    Machine Medical Ethics

    Get PDF
    In medical settings, machines are in close proximity with human beings: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. Machines in these contexts are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for empathy and emotion detection necessary? What about consciousness? The essays in this collection by researchers from both humanities and science describe various theoretical and experimental approaches to adding medical ethics to a machine, what design features are necessary in order to achieve this, philosophical and practical questions concerning justice, rights, decision-making and responsibility, and accurately modeling essential physician-machine-patient relationships. This collection is the first book to address these 21st-century concerns

    Exploring Older Adults’ Perceptions of the Utility and Ease of Use of Personal Emergency Response Systems

    Full text link
    Key Words: Older adults, aging in place, functional impairment, assistive home-based technology, personal emergency response system (PERS). Aim: The aim of this study was to explore and describe perceptions of the utility and ease of use of a personal emergency response system (PERS) among older adults who are aging in place. Research Question: “What is the meaning of a PERS use for functionally impaired older adults?” Design: An exploratory-descriptive qualitative design was used to recruit members of a VNSNY CHOICE Managed Long Term Care (MLTC) site in Queens, NY, who met the study’s eligibility through the selection criteria. Fourteen participants gave verbal and written consent. Method: The researcher used a nine-question in-person interview guide to conduct the face-to-face, audio-taped, semi-structured interviews to gather information on the participants’ experiences with using a PERS device. Data were collected over a two-month period. Findings: While many participants admitted that they did not wear the PERS neck pendant or wrist device consistently, they still reported benefiting from having the button and participating in the VNSNY program. Findings were consistent with the existing literature on PERS compliance, defined as wearing and using the device. The research question was answered: Functionally impaired older adults who use a PERS device regard it as a Reassuring presence, and Simple and effortless, if you need it, and when using it, they feel Alone, but connected. The overarching theme is that PERS devices serve as an adjunctive resource and a helpful backup that promotes interconnectedness. Conclusions:Despite the significant end-user benefits of increased independence and decreased institutionalization and the availability of community support services for older adults who are aging in place—such as those provided by the VNSNY CHOICE program and its home-based assistive technology, the VNSNY PERS device—most participants in this study reported that they still did not wear or use the PERS device as the visiting nurse instructed and encouraged them to do. Suggestions for future research: The findings of this study contribute to the literature on technology use among older adults who choose to age in place, and identified an important question for future research: “What is use and non-use of PERS?

    Sustainable Value Co-Creation in Welfare Service Ecosystems : Transforming temporary collaboration projects into permanent resource integration

    Get PDF
    The aim of this paper is to discuss the unexploited forces of user-orientation and shared responsibility to promote sustainable value co-creation during service innovation projects in welfare service ecosystems. The framework is based on the theoretical field of public service logic (PSL) and our thesis is that service innovation seriously requires a user-oriented approach, and that such an approach enables resource integration based on the service-user’s needs and lifeworld. In our findings, we identify prerequisites and opportunities of collaborative service innovation projects in order to transform these projects into sustainable resource integration once they have ended

    Contelog: A Formal Declarative Framework for Contextual Knowledge Representation and Reasoning

    Get PDF
    Context-awareness is at the core of providing timely adaptations in safety-critical secure applications of pervasive computing and Artificial Intelligence (AI) domains. In the current AI and application context-aware frameworks, the distinction between knowledge and context are blurred and not formally integrated. As a result, adaptation behaviors based on contextual reasoning cannot be formally derived and reasoned about. Also, in many smart systems such as automated manufacturing, decision making, and healthcare, it is essential for context-awareness units to synchronize with contextual reasoning modules to derive new knowledge in order to adapt, alert, and predict. A rigorous formalism is therefore essential to (1) represent contextual domain knowledge as well as application rules, and (2) efficiently and effectively reason to draw contextual conclusions. This thesis is a contribution in this direction. The thesis introduces first a formal context representation and a context calculus used to build context models for applications. Then, it introduces query processing and optimization techniques to perform context-based reasoning. The formal framework that achieves these two tasks is called Contelog Framework, obtained by a conservative extension of the syntax and semantics of Datalog. It models contextual knowledge and infers new knowledge. In its design, contextual knowledge and contextual reasoning are loosely coupled, and hence contextual knowledge is reusable on its own. The significance is that by fixing the contextual knowledge, rules in the program and/or query may be changed. Contelog provides a theory of context, in a way that is independent of the application logic rules. The context calculus developed in this thesis allows exporting knowledge inferred in one context to be used in another context. Following the idea of Magic sets from Datalog, Magic Contexts together with query rewriting algorithms are introduced to optimize bottom-up query evaluation of Contelog programs. A Book of Examples has been compiled for Contelog, and these examples are implemented to showcase a proof of concept for the generality, expressiveness, and rigor of the proposed Contelog framework. A variety of experiments that compare the performance of Contelog with earlier Datalog implementations reveal a significant improvement and bring out practical merits of current stage of Contelog and its potential for future extensions in context representation and reasoning of emerging applications of context-aware computing
    • …
    corecore