10,838 research outputs found

    Discovery of orexant and anorexant agents with indazole scaffold endowed with peripheral antiedema activity

    Get PDF
    CB1 receptors and endocannabinoids are integrated components of neuronal networks controlling different organism’s functions, such as appetite and food intake in the hypothalamus. A series of Rimonabant/Fubinaca hybrids have been synthesized in solution as C-terminal amides, acids, methyl esters and N-methyl amides. These compounds have been studied in cannabinoid receptor binding assay and functional receptor assay in vitro, the most active among them as agonist (LONI 11) and antagonist (LONI 4) were tested in vivo to evaluate their ability to stimulate or suppress the feeding behavior after i.p. administration. For LONI 11 formalin test and tail flick tests after s.c. and i.c.v. routes respectively, were also performed in vivo with the aim to investigate the antinociceptive effect at the central or peripheral level. In the Zymosan-induced edema and hyperalgesia, LONI 11 reduced the % paw volume increase and % paw latency after s.c. administration, also suggesting a potential anti-inflammatory activity at the periphery. Keywords. Cannabinoid receptor, Rimonabant, food intake, anorexant agent, edema

    Pre-Clinical Drug Prioritization via Prognosis-Guided Genetic Interaction Networks

    Get PDF
    The high rates of failure in oncology drug clinical trials highlight the problems of using pre-clinical data to predict the clinical effects of drugs. Patient population heterogeneity and unpredictable physiology complicate pre-clinical cancer modeling efforts. We hypothesize that gene networks associated with cancer outcome in heterogeneous patient populations could serve as a reference for identifying drug effects. Here we propose a novel in vivo genetic interaction which we call ‘synergistic outcome determination’ (SOD), a concept similar to ‘Synthetic Lethality’. SOD is defined as the synergy of a gene pair with respect to cancer patients' outcome, whose correlation with outcome is due to cooperative, rather than independent, contributions of genes. The method combines microarray gene expression data with cancer prognostic information to identify synergistic gene-gene interactions that are then used to construct interaction networks based on gene modules (a group of genes which share similar function). In this way, we identified a cluster of important epigenetically regulated gene modules. By projecting drug sensitivity-associated genes on to the cancer-specific inter-module network, we defined a perturbation index for each drug based upon its characteristic perturbation pattern on the inter-module network. Finally, by calculating this index for compounds in the NCI Standard Agent Database, we significantly discriminated successful drugs from a broad set of test compounds, and further revealed the mechanisms of drug combinations. Thus, prognosis-guided synergistic gene-gene interaction networks could serve as an efficient in silico tool for pre-clinical drug prioritization and rational design of combinatorial therapies

    A network inference method for large-scale unsupervised identification of novel drug-drug interactions

    Get PDF
    Characterizing interactions between drugs is important to avoid potentially harmful combinations, to reduce off-target effects of treatments and to fight antibiotic resistant pathogens, among others. Here we present a network inference algorithm to predict uncharacterized drug-drug interactions. Our algorithm takes, as its only input, sets of previously reported interactions, and does not require any pharmacological or biochemical information about the drugs, their targets or their mechanisms of action. Because the models we use are abstract, our approach can deal with adverse interactions, synergistic/antagonistic/suppressing interactions, or any other type of drug interaction. We show that our method is able to accurately predict interactions, both in exhaustive pairwise interaction data between small sets of drugs, and in large-scale databases. We also demonstrate that our algorithm can be used efficiently to discover interactions of new drugs as part of the drug discovery process

    16S rRNA gene profiling and genome reconstruction reveal community metabolic interactions and prebiotic potential of medicinal herbs used in neurodegenerative disease and as nootropics.

    Get PDF
    The prebiotic potential of nervine herbal medicines has been scarcely studied. We therefore used anaerobic human fecal cultivation to investigate whether medicinal herbs commonly used as treatment in neurological health and disease in Ayurveda and other traditional systems of medicine modulate gut microbiota. Profiling of fecal cultures supplemented with either Kapikacchu, Gotu Kola, Bacopa/Brahmi, Shankhapushpi, Boswellia/Frankincense, Jatamansi, Bhringaraj, Guduchi, Ashwagandha or Shatavari by 16S rRNA sequencing revealed profound changes in diverse taxa. Principal coordinate analysis highlights that each herb drives the formation of unique microbial communities predicted to display unique metabolic potential. The relative abundance of approximately one-third of the 243 enumerated species was altered by all herbs. Additional species were impacted in an herb-specific manner. In this study, we combine genome reconstruction of sugar utilization and short chain fatty acid (SCFA) pathways encoded in the genomes of 216 profiled taxa with monosaccharide composition analysis of each medicinal herb by quantitative mass spectrometry to enhance the interpretation of resulting microbial communities and discern potential drivers of microbiota restructuring. Collectively, our results indicate that gut microbiota engage in both protein and glycan catabolism, providing amino acid and sugar substrates that are consumed by fermentative species. We identified taxa that are efficient amino acid fermenters and those capable of both amino acid and sugar fermentation. Herb-induced microbial communities are predicted to alter the relative abundance of taxa encoding SCFA (butyrate and propionate) pathways. Co-occurrence network analyses identified a large number of taxa pairs in medicinal herb cultures. Some of these pairs displayed related culture growth relationships in replicate cultures highlighting potential functional interactions among medicinal herb-induced taxa

    Computational Models for Transplant Biomarker Discovery.

    Get PDF
    Translational medicine offers a rich promise for improved diagnostics and drug discovery for biomedical research in the field of transplantation, where continued unmet diagnostic and therapeutic needs persist. Current advent of genomics and proteomics profiling called "omics" provides new resources to develop novel biomarkers for clinical routine. Establishing such a marker system heavily depends on appropriate applications of computational algorithms and software, which are basically based on mathematical theories and models. Understanding these theories would help to apply appropriate algorithms to ensure biomarker systems successful. Here, we review the key advances in theories and mathematical models relevant to transplant biomarker developments. Advantages and limitations inherent inside these models are discussed. The principles of key -computational approaches for selecting efficiently the best subset of biomarkers from high--dimensional omics data are highlighted. Prediction models are also introduced, and the integration of multi-microarray data is also discussed. Appreciating these key advances would help to accelerate the development of clinically reliable biomarker systems
    • …
    corecore