175 research outputs found

    Program Semantics in Model-Based WCET Analysis: A State of the Art Perspective

    Get PDF
    Advanced design techniques of safety-critical applications use specialized development model based methods. Under this setting, the application exists at several levels of description, as the result of a sequence of transformations. On the positive side, the application is developed in a systematic way, while on the negative side, its high-level semantics may be obfuscated when represented at the lower levels. The application should provide certain functional and non-functional guarantees. When the application is a hard real-time program, such guarantees could be deadlines, thus making the computation of worst-case execution time (WCET) bounds mandatory. This paper overviews, in the context of WCET analysis, what are the existing techniques to extract, express and exploit the program semantics along the model-based development workflow

    04491 Abstracts Collection -- Synchronous Programming - SYNCHRON\u2704

    Get PDF
    From 28.11.04 to 03.12.04, the Dagstuhl Seminar Perspectives Workshop 04491 ``Synchronous Programming - SYNCHRON\u2704\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Model-driven timing analysis of embedded software

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A sequentially constructive circuit semantics for Esterel

    Get PDF
    Static Single Assignment (SSA) is an established concept that facilitates various program optimizations. However, it is typically restricted to sequential programming. We present an approach that extends SSA for concurrent, reactive programming, specifically for the synchronous language Esterel. This extended SSA transformation expands the class of programs that can be compiled by existing Esterel compilers without causality problems. It also offers a new, efficient solution for the well-studied signal reincarnation problem. Finally, our approach rules out speculation/backtracking, unlike the recently proposed sequentially constructive model of computation

    Compositional Timing-Aware Semantics for Synchronous Programming

    Get PDF

    Semantics of reactive systems : comparison and full abstraction

    Get PDF

    The Kiel Esterel processor: a multi-threaded reactive processor

    Get PDF
    Many embedded systems belong to the class of reactive systems, which continuously react to inputs from the environment by generating corresponding outputs. The programming of reactive systems typically requires the use of non-standard control flow constructs, such as concurrency or exception handling. Most programming languages do not support these constructs at all, or their use induces non-deterministic program behavior. To address these difficulties, the synchronous language Esterel has been developed to express reactive control flow patterns in a concise manner, with a clear semantics that imposes deterministic program behavior under all circumstances. There are different options to synthesize an Esterel program into a concrete system, e.g., software, hardware, and HW/SW co-design implementations. However, these classical synthesis approaches suffer from the limitations of traditional processors, with their instruction set architectures geared towards the sequential von-Neumann execution model, or they are very inflexible if HW synthesis is involved. Recently, another alternative for synthesizing Esterel has emerged, the reactive processing approach. Here the Esterel program is running on a processor that has been developed specifically for reactive systems. However, the main challenge when designing a reactive architecture is the handling of control. This thesis presents the Kiel Esterel Processor (KEP). In the KEP, the multi-threaded reactive architecture is responsible for managing the control flow of all threads. The KEP Instruction Set Architecture is complete in that it allows a direct mapping of all Esterel statements onto KEP assembler. It supports Esterel’s concurrency operator || in a very precise, direct and efficient way. It also supports full Esterel preemptions, i.e., the delayed and immediate strong/weak abortion and suspension. All other Esterel kernel statements, e.g., the Esterel exception, delay, and signal emission, etc., are also implemented directly and semantically accurate by the KEP. As the experimental comparison with a 32-bit commercial RISC processor indicates, the KEP has advantages in terms of memory use, execution speed, and energy consumption. Another advantage is the predictability of its timing behavior at the program level

    Language Design for Reactive Systems: On Modal Models, Time, and Object Orientation in Lingua Franca and SCCharts

    Get PDF
    Reactive systems play a crucial role in the embedded domain. They continuously interact with their environment, handle concurrent operations, and are commonly expected to provide deterministic behavior to enable application in safety-critical systems. In this context, language design is a key aspect, since carefully tailored language constructs can aid in addressing the challenges faced in this domain, as illustrated by the various concurrency models that prevent the known pitfalls of regular threads. Today, many languages exist in this domain and often provide unique characteristics that make them specifically fit for certain use cases. This thesis evolves around two distinctive languages: the actor-oriented polyglot coordination language Lingua Franca and the synchronous statecharts dialect SCCharts. While they take different approaches in providing reactive modeling capabilities, they share clear similarities in their semantics and complement each other in design principles. This thesis analyzes and compares key design aspects in the context of these two languages. For three particularly relevant concepts, it provides and evaluates lean and seamless language extensions that are carefully aligned with the fundamental principles of the underlying language. Specifically, Lingua Franca is extended toward coordinating modal behavior, while SCCharts receives a timed automaton notation with an efficient execution model using dynamic ticks and an extension toward the object-oriented modeling paradigm

    Time in SCCharts

    Get PDF
    Synchronous languages, such as the recently proposed SCCharts language, have been designed for the rigorous specification of real-time systems. Their sound semantics, which builds on an abstraction from physical execution time, make these languages appealing, in particular for safety-critical systems. However, they traditionally lack built-in support for physical time. This makes it rather cumbersome to express things like time-outs or periodic executions within the language. We here propose several mechanisms to reconcile the synchronous paradigm with physical time. Specifically, we propose extensions to the SCCharts language to express clocks and execution periods within the model. We draw on several sources, in particular timed automata, the Clock Constraint Specification Language, and the recently proposed concept of dynamic ticks. We illustrate how these extensions can be mapped to the SCChart language core, with minimal requirements on the run-time system, and we argue that the same concepts could be applied to other synchronous languages such as Esterel, Lustre or SCADE

    Taxys = Esterel + Kronos: A tool for verifying real-time properties of embedded systems

    Get PDF
    The goal of TAXYS is to provide a framework for developing real-time embedded code and verifying its correct behavior with respect to quantitative timing requirements. To achieve so, TAXYS connects France Telecom's ESTEREL compiler SAXO-RT with VERIMAG's model-checker KRONOS. TAXYS has been successfully applied on real industrial telecommunication systems, such as a GSM radio link from Alcatel and a phone prototype from France Telecom
    corecore