20,446 research outputs found

    Girt by sea: understanding Australia’s maritime domains in a networked world

    Get PDF
    This study aims to provide the background, language and context necessary for an informed understanding of the challenges and dilemmas faced by those responsible for the efficacy of Australia’s maritime domain awareness system. Abstract Against a rapidly changing region dominated by the rise of China, India and, closer to home, Indonesia, Australia’s approaches to understanding its maritime domains will be influenced by strategic factors and diplomatic judgements as well as operational imperatives.  Australia’s alliance relationship with the United States and its relationships with regional neighbours may be expected to have a profound impact on the strength of the information sharing and interoperability regimes on which so much of Australia’s maritime domain awareness depends. The purpose of this paper is twofold.  First, it seeks to explain in plain English some of the principles, concepts and terms that maritime domain awareness practitioners grapple with on a daily basis.  Second, it points to a series of challenges that governments face in deciding how to spend scarce tax dollars to deliver a maritime domain awareness system that is necessary and sufficient for the protection and promotion of Australia’s national interests

    Risk Management in the Arctic Offshore: Wicked Problems Require New Paradigms

    Get PDF
    Recent project-management literature and high-profile disasters—the financial crisis, the BP Deepwater Horizon oil spill, and the Fukushima nuclear accident—illustrate the flaws of traditional risk models for complex projects. This research examines how various groups with interests in the Arctic offshore define risks. The findings link the wicked problem framework and the emerging paradigm of Project Management of the Second Order (PM-2). Wicked problems are problems that are unstructured, complex, irregular, interactive, adaptive, and novel. The authors synthesize literature on the topic to offer strategies for navigating wicked problems, provide new variables to deconstruct traditional risk models, and integrate objective and subjective schools of risk analysis

    Applying insights on categorisation, communication, and dynamic decision-making: A case study of a ‘simple’ maritime military decision

    Get PDF
    A complete understanding of decision-making in military domains requires gathering insights from several fields of study. To make the task tractable, here we consider a specific example of short-term tactical decisions under uncertainty made by the military at sea. Through this lens, we sketch out relevant literature from three psychological tasks each underpinned by decision-making processes: categorisation, communication, and choice. From the literature, we note two general cognitive tendencies that emerge across all three stages: the effect of cognitive load and individual differences. Drawing on these tendencies, we recommend strategies, tools and future research that could improve performance in military domains—but, by extension, would also generalise to other high-stakes contexts. In so doing, we show the extent to which domain general properties of high order cognition are sufficient in explaining behaviours in domain specific contexts

    Digital Twins for Ports: Derived from Smart City and Supply Chain Twinning Experience

    Full text link
    Ports are striving for innovative technological solutions to cope with the ever-increasing growth of transport, while at the same time improving their environmental footprint. An emerging technology that has the potential to substantially increase the efficiency of the multifaceted and interconnected port processes is the digital twin. Although digital twins have been successfully integrated in many industries, there is still a lack of cross-domain understanding of what constitutes a digital twin. Furthermore, the implementation of the digital twin in complex systems such as the port is still in its infancy. This paper attempts to fill this research gap by conducting an extensive cross-domain literature review of what constitutes a digital twin, keeping in mind the extent to which the respective findings can be applied to the port. It turns out that the digital twin of the port is most comparable to complex systems such as smart cities and supply chains, both in terms of its functional relevance as well as in terms of its requirements and characteristics. The conducted literature review, considering the different port processes and port characteristics, results in the identification of three core requirements of a digital port twin, which are described in detail. These include situational awareness, comprehensive data analytics capabilities for intelligent decision making, and the provision of an interface to promote multi-stakeholder governance and collaboration. Finally, specific operational scenarios are proposed on how the port's digital twin can contribute to energy savings by improving the use of port resources, facilities and operations.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Towards an understanding of the consequences of technology-driven decision support for maritime navigation

    Get PDF
    The maritime industry is undergoing a transformation driven by digitalization and connectivity. There is speculation that in the next two decades the maritime industry will witness changes far exceeding those experienced over the past 100 years. While change is inevitable in the maritime domain, technological developments do not guarantee navigational safety, efficiency, or improved seaway traffic management. The International Maritime Organization (IMO) has adopted the Maritime Autonomous Surface Ships (MASS) concept to define autonomy on a scale from Degrees 1 through 4.\ua0 Investigations into the impact of MASS on various aspects of the maritime sociotechnical system is currently ongoing by academic and industry stakeholders. However, the early adoption of MASS (Degree 1), which is classified as a crewed ship with decision support, remains largely unexplored. Decision support systems are intended to support operator decision-making and improve operator performance. In practice they can cause unintended changes throughout other elements of the maritime sociotechnical system. In the maritime industry, the human is seldom put first in technology design which paradoxically introduces human-automation challenges related to technology acceptance, use, trust, reliance, and risk. The co-existence of humans and automation, as it pertains to navigation and navigational assistance, is explored throughout this thesis. The aims of this thesis are (1) to understand how decision support will impact navigation and navigational assistance from the operator’s perspective and (2) to explore a framework to help reduce the gaps between the design and use of decision support technologies. This thesis advocates for a human-centric approach to automation design and development while exploring the broader impacts upon the maritime sociotechnical system. This work considers three different projects and four individual data collection efforts during 2017-2022. This research took place in Gothenburg, Sweden, and Warsash, UK and includes data from 65 Bridge Officers (navigators) and 16 Vessel Traffic Service (VTS) operators. Two testbeds were used to conduct the research in several full mission bridge simulators, and a virtual reality environment. A mixed methods approach, with a heavier focus on qualitative data, was adopted to understand the research problem. Methodological tools included literature reviews, observations, questionnaires, ship maneuvering data, collective interviews, think-aloud protocol, and consultation with subject matter experts. The data analysis included thematic analysis, subject matter expert consultation, and descriptive statistics.\ua0The results show that operators perceive that decision support will impact their work, but not necessarily as expected. The operators’ positive and negative perceptions are discussed within the frameworks of human-automation interaction, decision-making, and systems thinking. The results point towards gaps in work as it is intended to be done and work as it is done in the user’s context. A user-driven design framework is proposed which allows for a systematic, flexible, and iterative design process capable of testing new technologies while involving all stakeholders. These results have led to the identification of several research gaps in relation to the overall preparedness of the shipping industry to manage the evolution toward smarter ships. This thesis will discuss these findings and advocate for human-centered automation within the quickly evolving maritime industry

    ErgoShip 2021 – Maritime artikler

    Get PDF
    Welcome to the special issue dedicated to the conference Ergoship 2021! The editorial committee are proud to present a selection of papers from Ergoship 2021 and a few invited papers within the topic of maritime Human Factors. The first Ergoshipwas held in Gothenburg in 2011 to create a meeting place for researchers in maritime Human Factors. The conference has lived on and was held in Australia 2016, in Haugesund 2019 and in South Korea 2021. We wish we could all have met in person, but this time it was not to be. Nevertheless, we look forward to sharing these papers with you and hope we can drive this field forward together. Enjoy the papers from a small but passionate group of contributors. The authors and the audience make this recurring conference special

    Expanding alliance: ANZUS cooperation and Asia–Pacific security

    Get PDF
    Is an alliance conceived as a bulwark against a resurgence of Japanese militarism and which cut its military and intelligence teeth in the Cold War is still relevant to today’s strategic concerns? Overview The alliance between Australia and the US, underpinned by the formal ANZUS Treaty of 1951, continues to be a central part of Australian defence and security thinking and an instrument of American policy in the Asia–Pacific. How is it that an alliance conceived as a bulwark against a resurgence of Japanese militarism and which cut its military and intelligence teeth in the Cold War is still relevant to today’s strategic concerns? The answer is partly—and importantly—that the core values of the ANZUS members are strongly aligned, and successive Australian governments and American presidential administrations have seen great value in working with like-minded partners to ensure Asia–Pacific security. Far from becoming a historical curiosity, today it’s not just relevant, but of greater importance than has been the case in the past few decades. To explore new ideas on how to strengthen the US–Australia alliance, ASPI conducted a high-level strategic dialogue in Honolulu in July this year. Discussions canvassed the future strategic environment; the forthcoming Australian Defence White Paper; budget, sovereignty and expectation risks; and cooperation in the maritime, land, air, cyber, space and intelligence domains. A key purpose of the Honolulu dialogue was to help ASPI develop policy recommendations on the alliance relationship for government. This report is the product of those discussions

    INTEROPERABILITY FOR MODELING AND SIMULATION IN MARITIME EXTENDED FRAMEWORK

    Get PDF
    This thesis reports on the most relevant researches performed during the years of the Ph.D. at the Genova University and within the Simulation Team. The researches have been performed according to M&S well known recognized standards. The studies performed on interoperable simulation cover all the environments of the Extended Maritime Framework, namely Sea Surface, Underwater, Air, Coast & Land, Space and Cyber Space. The applications cover both the civil and defence domain. The aim is to demonstrate the potential of M&S applications for the Extended Maritime Framework, applied to innovative unmanned vehicles as well as to traditional assets, human personnel included. A variety of techniques and methodology have been fruitfully applied in the researches, ranging from interoperable simulation, discrete event simulation, stochastic simulation, artificial intelligence, decision support system and even human behaviour modelling

    Studying Control Processes for Bridge Teams

    Get PDF
    Several technological advances have been seen the maritime domain to achieve higher operational efficiency and to address the generally recognised causes of most maritime accidents. The International Maritime Organization (IMO) endorses the use of best available technology to “drive continuous improvement and innovation in the facilitation of maritime traffic” in line with the goal of sustainable development. It is commonly acknowledged that modern technology revolutionized marine navigation, and presently it has a large potential to increase safety in navigation. However, the incorporation of new technologies in support of navigation also brought unforeseen critical consequences, contributing to unsafe practices, or even to accidents or incidents. Several issues were associated with human factors. To properly address the adoption of the newest technology in support of safe navigation, IMO established the e-navigation concept, currently under implementation. The complexity of the maritime socio-technical system requires novel theoretical foundations, since many of the present framework rely on the analysis of accidents. The design of complex maritime navigation system must take place on several levels, providing different perspectives over the system problems. The evaluation and design of technologies envisaged by the e-navigation concept requires a better understand of how teams perform the navigation work in the pursuit of safe navigation. This study attempts to provide a better understanding on how maritime navigation is currently done on-board, considering the overarching elements and their interactions. In maritime navigation safety is a transverse issue, and that is why we need to know the conditions for safe navigation to improve the design of ship navigation control. The work supporting this thesis was focused on: (i) understanding how navigation is done and to perceive by the practitioners, (ii) understanding interactions between humans and technological interfaces, and (iii) understanding the relevant soft skills for the navigation functions. To address these topics, data was collected from expert practitioners such as navigators, pilots and instructors, thru semi structured interviews and questionnaires. The mains contribution of this study lies in presenting a framework of maritime navigation, exploring the control processes in the different levels of the maritime socio-technical system. In the view of safe operations, interactions between stakeholders are clarified, trying to determine how they influence safe navigation. This systemic view is then analysed from the perspective of the ship, considering it as a Joint-cognitive system (JCS). It is proposed that this JCS comprises 5 control levels: reactive, proactive, planning, strategic and political-economical. Planning is considered a fundamental process in the maritime Socio-technical system, because it facilitates the interactions between the different control level. It also increases the integrity of communications and enhances the predictability of the different control agents. New directions are proposed to improve the design of navigation system, recommending new roles for human and automated agents, and presenting a new conceptual navigation display.info:eu-repo/semantics/publishedVersio
    corecore