20 research outputs found

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs

    Microarchitectural Low-Power Design Techniques for Embedded Microprocessors

    Get PDF
    With the omnipresence of embedded processing in all forms of electronics today, there is a strong trend towards wireless, battery-powered, portable embedded systems which have to operate under stringent energy constraints. Consequently, low power consumption and high energy efficiency have emerged as the two key criteria for embedded microprocessor design. In this thesis we present a range of microarchitectural low-power design techniques which enable the increase of performance for embedded microprocessors and/or the reduction of energy consumption, e.g., through voltage scaling. In the context of cryptographic applications, we explore the effectiveness of instruction set extensions (ISEs) for a range of different cryptographic hash functions (SHA-3 candidates) on a 16-bit microcontroller architecture (PIC24). Specifically, we demonstrate the effectiveness of light-weight ISEs based on lookup table integration and microcoded instructions using finite state machines for operand and address generation. On-node processing in autonomous wireless sensor node devices requires deeply embedded cores with extremely low power consumption. To address this need, we present TamaRISC, a custom-designed ISA with a corresponding ultra-low-power microarchitecture implementation. The TamaRISC architecture is employed in conjunction with an ISE and standard cell memories to design a sub-threshold capable processor system targeted at compressed sensing applications. We furthermore employ TamaRISC in a hybrid SIMD/MIMD multi-core architecture targeted at moderate to high processing requirements (> 1 MOPS). A range of different microarchitectural techniques for efficient memory organization are presented. Specifically, we introduce a configurable data memory mapping technique for private and shared access, as well as instruction broadcast together with synchronized code execution based on checkpointing. We then study an inherent suboptimality due to the worst-case design principle in synchronous circuits, and introduce the concept of dynamic timing margins. We show that dynamic timing margins exist in microprocessor circuits, and that these margins are to a large extent state-dependent and that they are correlated to the sequences of instruction types which are executed within the processor pipeline. To perform this analysis we propose a circuit/processor characterization flow and tool called dynamic timing analysis. Moreover, this flow is employed in order to devise a high-level instruction set simulation environment for impact-evaluation of timing errors on application performance. The presented approach improves the state of the art significantly in terms of simulation accuracy through the use of statistical fault injection. The dynamic timing margins in microprocessors are then systematically exploited for throughput improvements or energy reductions via our proposed instruction-based dynamic clock adjustment (DCA) technique. To this end, we introduce a 6-stage 32-bit microprocessor with cycle-by-cycle DCA. Besides a comprehensive design flow and simulation environment for evaluation of the DCA approach, we additionally present a silicon prototype of a DCA-enabled OpenRISC microarchitecture fabricated in 28 nm FD-SOI CMOS. The test chip includes a suitable clock generation unit which allows for cycle-by-cycle DCA over a wide range with fine granularity at frequencies exceeding 1 GHz. Measurement results of speedups and power reductions are provided

    Primary vertex reconstruction using GPUs for the upgrade of the Inner Tracking System of the ALICE experiment at LHC

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    Phylogenetics in the Genomic Era

    Get PDF
    Molecular phylogenetics was born in the middle of the 20th century, when the advent of protein and DNA sequencing offered a novel way to study the evolutionary relationships between living organisms. The first 50 years of the discipline can be seen as a long quest for resolving power. The goal – reconstructing the tree of life – seemed to be unreachable, the methods were heavily debated, and the data limiting. Maybe for these reasons, even the relevance of the whole approach was repeatedly questioned, as part of the so-called molecules versus morphology debate. Controversies often crystalized around long-standing conundrums, such as the origin of land plants, the diversification of placental mammals, or the prokaryote/eukaryote divide. Some of these questions were resolved as gene and species samples increased in size. Over the years, molecular phylogenetics has gradually evolved from a brilliant, revolutionary idea to a mature research field centred on the problem of reliably building trees. This logical progression was abruptly interrupted in the late 2000s. High-throughput sequencing arose and the field suddenly moved into something entirely different. Access to genome-scale data profoundly reshaped the methodological challenges, while opening an amazing range of new application perspectives. Phylogenetics left the realm of systematics to occupy a central place in one of the most exciting research fields of this century – genomics. This is what this book is about: how we do trees, and what we do with trees, in the current phylogenomic era. One obvious, practical consequence of the transition to genome-scale data is that the most widely used tree-building methods, which are based on probabilistic models of sequence evolution, require intensive algorithmic optimization to be applicable to current datasets. This problem is considered in Part 1 of the book, which includes a general introduction to Markov models (Chapter 1.1) and a detailed description of how to optimally design and implement Maximum Likelihood (Chapter 1.2) and Bayesian (Chapter 1.4) phylogenetic inference methods. The importance of the computational aspects of modern phylogenomics is such that efficient software development is a major activity of numerous research groups in the field. We acknowledge this and have included seven "How to" chapters presenting recent updates of major phylogenomic tools – RAxML (Chapter 1.3), PhyloBayes (Chapter 1.5), MACSE (Chapter 2.3), Bgee (Chapter 4.3), RevBayes (Chapter 5.2), Beagle (Chapter 5.4), and BPP (Chapter 5.6). Genome-scale data sets are so large that statistical power, which had been the main limiting factor of phylogenetic inference during previous decades, is no longer a major issue. Massive data sets instead tend to amplify the signal they deliver – be it biological or artefactual – so that bias and inconsistency, instead of sampling variance, are the main problems with phylogenetic inference in the genomic era. Part 2 covers the issues of data quality and model adequacy in phylogenomics. Chapter 2.1 provides an overview of current practice and makes recommendations on how to avoid the more common biases. Two chapters review the challenges and limitations of two key steps of phylogenomic analysis pipelines, sequence alignment (Chapter 2.2) and orthology prediction (Chapter 2.4), which largely determine the reliability of downstream inferences. The performance of tree building methods is also the subject of Chapter 2.5, in which a new approach is introduced to assess the quality of gene trees based on their ability to correctly predict ancestral gene order. Analyses of multiple genes typically recover multiple, distinct trees. Maybe the biggest conceptual advance induced by the phylogenetic to phylogenomic transition is the suggestion that one should not simply aim to reconstruct “the” species tree, but rather to be prepared to make sense of forests of gene trees. Chapter 3.1 reviews the numerous reasons why gene trees can differ from each other and from the species tree, and what the implications are for phylogenetic inference. Chapter 3.2 focuses on gene trees/species trees reconciliation methods that account for gene duplication/loss and horizontal gene transfer among lineages. Incomplete lineage sorting is another major source of phylogenetic incongruence among loci, which recently gained attention and is covered by Chapter 3.3. Chapter 3.4 concludes this part by taking a user’s perspective and examining the pros and cons of concatenation versus separate analysis of gene sequence alignments. Modern genomics is comparative and phylogenetic methods are key to a wide range of questions and analyses relevant to the study of molecular evolution. This is covered by Part 4. We argue that genome annotation, either structural or functional, can only be properly achieved in a phylogenetic context. Chapters 4.1 and 4.2 review the power of these approaches and their connections with the study of gene function. Molecular substitution rates play a key role in our understanding of the prevalence of nearly neutral versus adaptive molecular evolution, and the influence of species traits on genome dynamics (Chapter 4.4). The analysis of substitution rates, and particularly the detection of positive selection, requires sophisticated methods and models of coding sequence evolution (Chapter 4.5). Phylogenomics also offers a unique opportunity to explore evolutionary convergence at a molecular level, thus addressing the long-standing question of predictability versus contingency in evolution (Chapter 4.6). The development of phylogenomics, as reviewed in Parts 1 through 4, has resulted in a powerful conceptual and methodological corpus, which is often reused for addressing problems of interest to biologists from other fields. Part 5 illustrates this application potential via three selected examples. Chapter 5.1 addresses the link between phylogenomics and palaeontology; i.e., how to optimally combine molecular and fossil data for estimating divergence times. Chapter 5.3 emphasizes the importance of the phylogenomic approach in virology and its potential to trace the origin and spread of infectious diseases in space and time. Finally, Chapter 5.5 recalls why phylogenomic methods and the multi-species coalescent model are key in addressing the problem of species delimitation – one of the major goals of taxonomy. It is hard to predict where phylogenomics as a discipline will stand in even 10 years. Maybe a novel technological revolution will bring it to yet another level? We strongly believe, however, that tree thinking will remain pivotal in the treatment and interpretation of the deluge of genomic data to come. Perhaps a prefiguration of the future of our field is provided by the daily monitoring of the current Covid-19 outbreak via the phylogenetic analysis of coronavirus genomic data in quasi real time – a topic of major societal importance, contemporary to the publication of this book, in which phylogenomics is instrumental in helping to fight disease

    Unleashing the power of semantic text analysis: a complex systems approach

    Get PDF
    In the present information era, a huge amount of machine-readable data is available regarding scientific publications. Such unprecedented wealth of data offers the opportunity to investigate science itself as a complex interacting system by means of quantitative approaches. These kind of studies have the potential to provide new insights on the large-scale organization of science and the driving mechanisms underlying its evolution. A particularly important aspect of these data is the semantic information present within publications as it grants access to the concepts used by scientists to describe their findings. Nevertheless, the presence of the so-called buzzwords, \ie terms that are not specific and are used indistinctly in many contexts, hinders the emerging of the thematic organization of scientific articles. In this Thesis, I resume my original contribution to the problem of leveraging the semantic information contained in a corpus of documents. Specifically, I have developed an information-theoretic measure, based on the maximum entropy principle, to quantify the information content of scientific concepts. This measure provides an objective and powerful way to identify generic concepts acting as buzzwords, which increase the noise present in the semantic similarity between articles. I prove that the removal of generic concepts is beneficial in terms of the sparsity of the similarity network, thus allowing the detection of communities of articles that are related to more specific themes. The same effect is observed when describing the corpus of articles in terms of topics, namely clusters of concepts that compose the papers as a mixture. Moreover, I applied the method to a collection of web documents obtaining a similar effect despite their differences with scientific articles. Regarding the scientific knowledge, another important aspect I examine is the temporal evolution of the concept generality, as it may potentially describe typical patterns in the evolution of concepts that can highlight the way in which they are consumed over time

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods
    corecore