1,740 research outputs found

    Development of a simulation tool for measurements and analysis of simulated and real data to identify ADLs and behavioral trends through statistics techniques and ML algorithms

    Get PDF
    openCon una popolazione di anziani in crescita, il numero di soggetti a rischio di patologia Ăš in rapido aumento. Molti gruppi di ricerca stanno studiando soluzioni pervasive per monitorare continuamente e discretamente i soggetti fragili nelle loro case, riducendo i costi sanitari e supportando la diagnosi medica. Comportamenti anomali durante l'esecuzione di attivitĂ  di vita quotidiana (ADL) o variazioni sulle tendenze comportamentali sono di grande importanza.With a growing population of elderly people, the number of subjects at risk of pathology is rapidly increasing. Many research groups are studying pervasive solutions to continuously and unobtrusively monitor fragile subjects in their homes, reducing health-care costs and supporting the medical diagnosis. Anomalous behaviors while performing activities of daily living (ADLs) or variations on behavioral trends are of great importance. To measure ADLs a significant number of parameters need to be considering affecting the measurement such as sensors and environment characteristics or sensors disposition. To face the impossibility to study in the real context the best configuration of sensors able to minimize costs and maximize accuracy, simulation tools are being developed as powerful means. This thesis presents several contributions on this topic. In the following research work, a study of a measurement chain aimed to measure ADLs and represented by PIRs sensors and ML algorithm is conducted and a simulation tool in form of Web Application has been developed to generate datasets and to simulate how the measurement chain reacts varying the configuration of the sensors. Starting from eWare project results, the simulation tool has been thought to provide support for technicians, developers and installers being able to speed up analysis and monitoring times, to allow rapid identification of changes in behavioral trends, to guarantee system performance monitoring and to study the best configuration of the sensors network for a given environment. The UNIVPM Home Care Web App offers the chance to create ad hoc datasets related to ADLs and to conduct analysis thanks to statistical algorithms applied on data. To measure ADLs, machine learning algorithms have been implemented in the tool. Five different tasks have been identified. To test the validity of the developed instrument six case studies divided into two categories have been considered. To the first category belong those studies related to: 1) discover the best configuration of the sensors keeping environmental characteristics and user behavior as constants; 2) define the most performant ML algorithms. The second category aims to proof the stability of the algorithm implemented and its collapse condition by varying user habits. Noise perturbation on data has been applied to all case studies. Results show the validity of the generated datasets. By maximizing the sensors network is it possible to minimize the ML error to 0.8%. Due to cost is a key factor in this scenario, the fourth case studied considered has shown that minimizing the configuration of the sensors it is possible to reduce drastically the cost with a more than reasonable value for the ML error around 11.8%. Results in ADLs measurement can be considered more than satisfactory.INGEGNERIA INDUSTRIALEopenPirozzi, Michel

    PALMAR: Towards Adaptive Multi-inhabitant Activity Recognition in Point-Cloud Technology

    Full text link
    With the advancement of deep neural networks and computer vision-based Human Activity Recognition, employment of Point-Cloud Data technologies (LiDAR, mmWave) has seen a lot interests due to its privacy preserving nature. Given the high promise of accurate PCD technologies, we develop, PALMAR, a multiple-inhabitant activity recognition system by employing efficient signal processing and novel machine learning techniques to track individual person towards developing an adaptive multi-inhabitant tracking and HAR system. More specifically, we propose (i) a voxelized feature representation-based real-time PCD fine-tuning method, (ii) efficient clustering (DBSCAN and BIRCH), Adaptive Order Hidden Markov Model based multi-person tracking and crossover ambiguity reduction techniques and (iii) novel adaptive deep learning-based domain adaptation technique to improve the accuracy of HAR in presence of data scarcity and diversity (device, location and population diversity). We experimentally evaluate our framework and systems using (i) a real-time PCD collected by three devices (3D LiDAR and 79 GHz mmWave) from 6 participants, (ii) one publicly available 3D LiDAR activity data (28 participants) and (iii) an embedded hardware prototype system which provided promising HAR performances in multi-inhabitants (96%) scenario with a 63% improvement of multi-person tracking than state-of-art framework without losing significant system performances in the edge computing device.Comment: Accepted in IEEE International Conference on Computer Communications 202

    Modélisation d'une interaction systÚme-résident contextuelle, personnalisée et adaptative pour l'assistance cognitive à la réalisation des activités de la vie quotidienne dans les maisons connectées

    Get PDF
    Alors que le nombre de personnes vivant avec des dĂ©ficits cognitifs qui dĂ©coulent d’un traumatisme craniocĂ©rĂ©bral (TCC) va en croissant, les technologies d’assistance sont de plus en plus dĂ©veloppĂ©es pour rĂ©soudre les problĂšmes qu’ils induisent dans la rĂ©alisation des activitĂ©s de la vie quotidienne. L’Internet des objets et l’intelligence ambiante offrent un cadre pour fournir des services d’assistance sensibles au contexte, adaptatifs, autonomes et personnalisĂ©s pour ces personnes ayant des besoins particuliers. Une revue de la littĂ©rature sur le sujet permet de constater que les systĂšmes existants offrent trĂšs souvent une assistance excessive, quand l’aide contient plus d’information que nĂ©cessaire ou quand elle est fournie automatiquement Ă  chaque Ă©tape de l’activitĂ©. Cette assistance, inadaptĂ©e aux besoins et aux capacitĂ©s de la personne, est contraire Ă  certains principes de la rĂ©adaptation cognitive qui prĂŽnent la fourniture d’une assistance minimale pour encourager la personne Ă  agir au meilleur de ses capacitĂ©s. Cette thĂšse propose des modĂšles pour automatiser l’assistance cognitive sous forme de dialogue contextuel entre une personne ayant des dĂ©ficits cognitifs dus au TCC et un systĂšme lui fournissant l’assistance appropriĂ©e qui l’encourage Ă  rĂ©aliser ses activitĂ©s par lui-mĂȘme. Les principales contributions sont : (1) un modĂšle ontologique comme support de l’assistance cognitive dans les maisons connectĂ©es ; (2) un modĂšle d’interaction entre l’agent intelligent d’une maison connectĂ©e et une personne ayant subi un TCC, dans le cadre de l’assistance cognitive. Le modĂšle ontologique proposĂ© s’appuie sur les actes de langages et les donnĂ©es probantes de la rĂ©adaptation cognitive afin que l’assistance reflĂšte la pratique clinique. Il vise Ă  fournir aux maisons intelligentes la sĂ©mantique des donnĂ©es nĂ©cessaires pour caractĂ©riser les situations oĂč il y a besoin d’assistance, les messages d’assistance de gradations diffĂ©rentes et les rĂ©actions de la personne. InformĂ© par le modĂšle ontologique, le modĂšle d’interaction basĂ© sur des arbres de comportement (« behaviour trees ») permet alors Ă  un agent intelligent de planifier dynamiquement la diffusion de messages d’assistance progressifs avec des ajustements si nĂ©cessaire, en fonction du profil et du comportement du rĂ©sident de la maison connectĂ©e lors de l’accomplissement de ses activitĂ©s. Une validation prĂ©liminaire montre l’applicabilitĂ© des modĂšles dans l’implĂ©mentation de scĂ©narios relatifs Ă  l’utilisation sĂ©curitaire d’une cuisiniĂšre connectĂ©e dĂ©diĂ©e aux personnes ayant subi un TCC

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Assessment of Domestic Well-Being: From Perception to Measurement

    Get PDF
    Nowadays, there are plenty of sensing devices that enable the measurement of physiological, environmental, and behavioral parameters of people 24 hours a day, seven days a week and provide huge quantities of different data. Data and signals coming from sensing devices, installed in indoor or outdoor environments or often worn by the users, generate heterogeneous and complex structured datasets, most of the time not uniformly structured. The artificial intelligence (AI) algorithms applied to these sets of data have demonstrated capabilities to infer indices related to a subject's status and well-being [1]. Well-being is a key parameter in the World Health Organization (WHO) definition of health, considering its physical, mental, and social spheres. Quantitatively assessing a subject's well-being is of paramount importance if we want to assess the whole status of a person, which is particularly useful in the case of ageing people living alone. Assessment allows for continuous remote monitoring to improve people's quality of life (QoL) according to their perceptions, needs, and preferences. Technology undoubtedly plays a pivotal role in this regard, providing us new tools to support the objective evaluation of a subject's status, including her/his perception of the living environment. Its potential is huge, also in terms of support to the healthcare system and ageing people; however, there are several engineering challenges to consider, especially in terms of sensors integrability, connectivity, and metrological performance, in order to obtain reliable and accurate measurement systems

    Locomotion Traces Data Mining for Supporting Frail People with Cognitive Impairment

    Get PDF
    The rapid increase in the senior population is posing serious challenges to national healthcare systems. Hence, innovative tools are needed to early detect health issues, including cognitive decline. Several clinical studies show that it is possible to identify cognitive impairment based on the locomotion patterns of older people. Thus, this thesis at first focused on providing a systematic literature review of locomotion data mining systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying locomotion anomaly indicators and movement patterns for discovering low-level locomotion indicators, sensor data acquisition, and processing methods, as well as NDD detection algorithms considering their pros and cons. Then, we investigated the use of sensor data and Deep Learning (DL) to recognize abnormal movement patterns in instrumented smart-homes. In order to get rid of the noise introduced by indoor constraints and activity execution, we introduced novel visual feature extraction methods for locomotion data. Our solutions rely on locomotion traces segmentation, image-based extraction of salient features from locomotion segments, and vision-based DL. Furthermore, we proposed a data augmentation strategy to increase the volume of collected data and generalize the solution to different smart-homes with different layouts. We carried out extensive experiments with a large real-world dataset acquired in a smart-home test-bed from older people, including people with cognitive diseases. Experimental comparisons show that our system outperforms state-of-the-art methods

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    In Search of the DomoNovus: Speculative Designs for the Computationally-Enhanced Domestic Environment

    Get PDF
    Edited version embargoed until 01.02.2018 Full version: Access restricted permanently due to 3rd party copyright restrictions. Restriction set on 01.02.2017 by SC, Graduate schoolThe home is a physical place that provides isolation, comfort, access to essential needs on a daily basis, and it has a strong impact on a person’s life. Computational and media technologies (digital and electronic objects, devices, protocols, virtual spaces, telematics, interaction, social media, and cyberspace) become an important and vital part of the home ecology, although they have the ability to transform the domestic experience and the understanding of what a personal space is. For this reason, this work investigates the domestication of computational media technology; how objects, systems, and devices become part of the personal and intimate space of the inhabitants. To better understand the taming process, the home is studied and analysed from a range of perspectives (philosophy, sociology, architecture, art, and technology), and a methodological process is proposed for critically exploring the topic with the development of artworks, designs, and computational systems. The methodology of this research, which consists of five points (Context, Media Layers, Invisible Matter, Diffusion, and Symbiosis), suggests a procedure that is fundamental to the development and critical integration of the computationally enhanced home. Accordingly, the home is observed as an ecological system that contains numerous properties (organic, inorganic, hybrid, virtual, augmented), and is viewed on a range of scales (micro, meso and macro). To identify the “choreographies” that are formed between these properties and scales, case studies have been developed to suggest, provoke, and speculate concepts, ideas, and alternative realities of the home. Part of the speculation proposes the concept of DomoNovus (the “New Home”), where technological ubiquity supports the inhabitants’ awareness, perception, and imagination. DomoNovus intends to challenge our understanding of the domestic environment, and demonstrates a range of possibilities, threats, and limitations in relation to the future of home. This thesis, thus, presents methods, experiments, and speculations that intend to inform and inspire, as well as define creative and imaginative dimensions of the computationally-enhanced home, suggesting directions for the further understanding of the domestic life.Alexander S. Onassis Public Benefit Foundatio
    • 

    corecore