451 research outputs found

    SLA Translation in Multi-Layered Service Oriented Architectures: Status and Challenges

    Get PDF

    An Approach to Data Analysis in 5G Networks

    Get PDF
    5G networks expect to provide significant advances in network management compared to traditional mobile infrastructures by leveraging intelligence capabilities such as data analysis, prediction, pattern recognition and artificial intelligence. The key idea behind these actions is to facilitate the decision-making process in order to solve or mitigate common network problems in a dynamic and proactive way. In this context, this paper presents the design of Self-Organized Network Management in Virtualized and Software Defined Networks (SELFNET) Analyzer Module, which main objective is to identify suspicious or unexpected situations based on metrics provided by different network components and sensors. The SELFNET Analyzer Module provides a modular architecture driven by use cases where analytic functions can be easily extended. This paper also proposes the data specification to define the data inputs to be taking into account in diagnosis process. This data specification has been implemented with different use cases within SELFNET Project, proving its effectiveness.Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA)Fac. de InformáticaTRUEUnión Europea. Horizonte 2020pu

    A model-based approach for automatic recovery from memory leaks in enterprise applications

    Get PDF
    Large-scale distributed computing systems such as data centers are hosted on heterogeneous and networked servers that execute in a dynamic and uncertain operating environment, caused by factors such as time-varying user workload and various failures. Therefore, achieving stringent quality-of-service goals is a challenging task, requiring a comprehensive approach to performance control, fault diagnosis, and failure recovery. This work presents a model-based approach for fault management, which integrates limited lookahead control (LLC), diagnosis, and fault-tolerance concepts that: (1) enables systems to adapt to environment variations, (2) maintains the availability and reliability of the system, (3) facilitates system recovery from failures. We focused on memory leak errors in this thesis. A characterization function is designed to detect memory leaks. Then, a LLC is applied to enable the computing system to adapt efficiently to variations in the workload, and to enable the system recover from memory leaks and maintain functionality

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures

    Detection of fraudulent financial papers by picking a collection of characteristics using optimization algorithms and classification techniques based on squirrels

    Full text link
    To produce important investment decisions, investors require financial records and economic information. However, most companies manipulate investors and financial institutions by inflating their financial statements. Fraudulent Financial Activities exist in any monetary or financial transaction scenario, whether physical or electronic. A challenging problem that arises in this domain is the issue that affects and troubles individuals and institutions. This problem has attracted more attention in the field in part owing to the prevalence of financial fraud and the paucity of previous research. For this purpose, in this study, the main approach to solve this problem, an anomaly detection-based approach based on a combination of feature selection based on squirrel optimization pattern and classification methods have been used. The aim is to develop this method to provide a model for detecting anomalies in financial statements using a combination of selected features with the nearest neighbor classifications, neural networks, support vector machine, and Bayesian. Anomaly samples are then analyzed and compared to recommended techniques using assessment criteria. Squirrel optimization's meta-exploratory capability, along with the approach's ability to identify abnormalities in financial data, has been shown to be effective in implementing the suggested strategy. They discovered fake financial statements because of their expertise

    Towards Scalable, Private and Practical Deep Learning

    Get PDF
    Deep Learning (DL) models have drastically improved the performance of Artificial Intelligence (AI) tasks such as image recognition, word prediction, translation, among many others, on which traditional Machine Learning (ML) models fall short. However, DL models are costly to design, train, and deploy due to their computing and memory demands. Designing DL models usually requires extensive expertise and significant manual tuning efforts. Even with the latest accelerators such as Graphics Processing Unit (GPU) and Tensor Processing Unit (TPU), training DL models can take prohibitively long time, therefore training large DL models in a distributed manner is a norm. Massive amount of data is made available thanks to the prevalence of mobile and internet-of-things (IoT) devices. However, regulations such as HIPAA and GDPR limit the access and transmission of personal data to protect security and privacy. Therefore, enabling DL model training in a decentralized but private fashion is urgent and critical. Deploying trained DL models in a real world environment usually requires meeting Quality of Service (QoS) standards, which makes adaptability of DL models an important yet challenging matter.  In this dissertation, we aim to address the above challenges to make a step towards scalable, private, and practical deep learning. To simplify DL model design, we propose Efficient Progressive Neural-Architecture Search (EPNAS) and FedCust to automatically design model architectures and tune hyperparameters, respectively. To provide efficient and robust distributed training while preserving privacy, we design LEASGD, TiFL, and HDFL. We further conduct a study on the security aspect of distributed learning by focusing on how data heterogeneity affects backdoor attacks and how to mitigate such threats. Finally, we use super resolution (SR) as an example application to explore model adaptability for cross platform deployment and dynamic runtime environment. Specifically, we propose DySR and AdaSR frameworks which enable SR models to meet QoS by dynamically adapting to available resources instantly and seamlessly without excessive memory overheads

    Uncertainty and uncertainty tolerance in service provisioning

    Get PDF
    PhDService, in general term is a type of economic activity where the consumers utilize labour and/or expertise of others to perform a specific task. The birth and continued growth of the Internet provide a new medium for services to be delivered, and enable services to become widely and readily available. In recent years, the Internet has become an important platform to provide services to the end users. Service provisioning, In the context of computing, is the process of providing users with access to data and technology resources. In a perfect operating environment, the entities involved can expect the system will perform as intended or up to an accepted level of quality. Unfortunately, disruptions or failures can occur which can affect the operation of the service. Thus, the entities involved, in particular the service requester faces a situation whereby the service requester’s belief towards certain process in the service provisioning life cycle is affected, i.e. deviates from the actual truth. This situation whereby the service requester’s belief is affected is referred as an uncertainty. in this thesis, we discuss and explore the issue of uncertainty throughout the service provisioning life cycle and provide a measure to tolerate uncertainty in service provisioning offer through the application of subjective probability framework. This thesis provides several key contributions to address the uncertainty issues in service provision- Ing system in particular, for a service requester to overcome the negative consequence of uncertainty. The key contributions are: (1) introduction to the issue of uncertainty in service provisioning system, (2) a new classification scheme for uncertainties in service provisioning system, (3) a unified view of uncertainty in service provisioning system based on temporal classification, which is linked to service requester’s view, (4) a concept of uncertainty tolerance for service provisioning, (5) an approach and framework for automated uncertainty tolerance in service provisioning offer. The approach and framework for uncertainty tolerance in service provisioning offer presented in this thesis is evaluated through an empirical study. The result from the study shows the viability of the approach and framework of the uncertainty tolerance Mechanism through the application of subjective probability theory. The result also shows the positive outcome of the mechanism in term of higher cumulative utility, and better acceptance rate for the service requester.UNIMAS(Universiti Malaysia Sarawak) Government of Malaysi
    corecore