1,302 research outputs found

    Aspects of Assembly and Cascaded Aspects of Assembly: Logical and Temporal Properties

    Full text link
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. This has to be done in a timely fashion, and the adaptation process must be as fast as possible and mastered. Moreover the adaptation process has to ensure a consistent result when finished whereas adaptations to be implemented cannot be anticipated at design time. In this paper we present our mechanism for self-adaptation based on the aspect oriented programming paradigm called Aspect of Assembly (AAs). Using AAs: (1) the adaptations process is fast and its duration is mastered; (2) adaptations' entities are independent of each other thanks to the weaver logical merging mechanism; and (3) the high variability of the software infrastructure can be managed using a mono or multi-cycle weaving approach.Comment: 14 pages, published in International Journal of Computer Science, Volume 8, issue 4, Jul 2011, ISSN 1694-081

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    An Efficient and Flexible Implementation of Aspect-Oriented Languages

    Get PDF
    Compilers for modern object-oriented programming languages generate code in a platform independent intermediate language preserving the concepts of the source language; for example, classes, fields, methods, and virtual or static dispatch can be directly identified within the intermediate code. To execute this intermediate code, state-of-the-art implementations of virtual machines perform just-in-time (JIT) compilation of the intermediate language; i.e., the virtual instructions in the intermediate code are compiled to native machine code at runtime. In this step, a declarative representation of source language concepts in the intermediate language facilitates highly efficient adaptive and speculative optimization of the running program which may not be possible otherwise. In contrast, constructs of aspect-oriented languages - which improve the separation of concerns - are commonly realized by compiling them to conventional intermediate language instructions or by driving transformations of the intermediate code, which is called weaving. This way the aspect-oriented constructs' semantics is not preserved in a declarative manner at the intermediate language level. This representational gap between aspect-oriented concepts in the source code and in the intermediate code hinders high performance optimizations and weakens features of software engineering processes like debugging support or the continuity property of incremental compilation: modifying an aspect in the source code potentially requires re-weaving multiple other modules. To leverage language implementation techniques for aspect-oriented languages, this thesis proposes the Aspect-Language Implementation Architecture (ALIA) which prescribes - amongst others - the existence of an intermediate representation preserving the aspect-oriented constructs of the source program. A central component of this architecture is an extensible and flexible meta-model of aspect-oriented concepts which acts as an interface between front-ends (usually a compiler) and back-ends (usually a virtual machine) of aspect-oriented language implementations. The architecture and the meta-model are embodied for Java-based aspect-oriented languages in the Framework for Implementing Aspect Languages (FIAL) respectively the Language-Independent Aspect Meta-Model (LIAM) which is part of the framework. FIAL generically implements the work flows required from an execution environment when executing aspects provided in terms of LIAM. In addition to the first-class intermediate representation of aspect-oriented concepts, ALIA - and the FIAL framework as its incarnation - treat the points of interaction between aspects and other modules - so-called join points - as being late-bound to an implementation. In analogy to the object-oriented terminology for late-bound methods, the join points are called virtual in ALIA. Together, the first-class representation of aspect-oriented concepts in the intermediate representation as well as treating join points as being virtual facilitate the implementation of new and effective optimizations for aspect-oriented programs. Three different instantiations of the FIAL framework are presented in this thesis, showcasing the feasibility of integrating language back-ends with different characteristics with the framework. One integration supports static aspect deployment and produces results similar to conventional aspect weavers; the woven code is executable on any standard Java virtual machine. Two instantiations are fully dynamic, where one is realized as a portable plug-in for standard Java virtual machines and the other one, called Steamloom^ALIA , is realized as a deep integration into a specific virtual machine, the Jikes Research Virtual Machine Alpern2005. While the latter instantiation is not portable, it exhibits an outstanding performance. Virtual join point dispatch is a generalization of virtual method dispatch. Thus, well established and elaborate optimization techniques from the field of virtual method dispatch are re-used with slight adaptations in Steamloom^ALIA . These optimizations for aspect-oriented concepts go beyond the generation of optimal bytecode. Especially strikingly, the power of such optimizations is shown in this thesis by the examples of the cflow dynamic property, which may be necessary to evaluate during virtual join point dispatch, and dynamic aspect deployment - i.e., the selective modification of specific join points' dispatch. In order to evaluate the optimization techniques developed in this thesis, a means for benchmarking has been developed in terms of macro-benchmarks; i.e., real-world applications are executed. These benchmarks show that for both concepts the implementation presented here is at least circa twice as fast as state-of-the-art implementations performing static optimizations of the generated bytecode; in many cases this thesis's optimizations even reach a speed-up of two orders of magnitude for the cflow implementation and even four orders of magnitude for the dynamic deployment. The intermediate representation in terms of LIAM models is general enough to express the constructs of multiple aspect-oriented languages. Therefore, optimizations of features common to different languages are available to applications written in all of them. To proof that the abstractions provided by LIAM are sufficient to act as intermediate language for multiple aspect-oriented source languages, an automated translation from source code to LIAM models has been realized for three very different and popular aspect-oriented languages: AspectJ, JAsCo and Compose*. In addition, the feasibility of translating from CaesarJ to LIAM models is shown by discussion. The use of an extensible meta-model as intermediate representation furthermore simplifies the definition of new aspect-oriented language concepts as is shown in terms of a tutorial-style example of designing a domain specific extension to the Java language in this thesis

    Static and Dynamic Detection of Behavioral Conflicts Between Aspects

    Get PDF
    Aspects have been successfully promoted as a means to improve the modularization of software in the presence of crosscutting concerns. The so-called aspect interference problem is considered to be one of the remaining challenges of aspect-oriented software development: aspects may interfere with the behavior of the base code or other aspects. Especially interference between aspects is difficult to prevent, as this may be caused solely by the composition of aspects that behave correctly in isolation. A typical situation where this may occur is when multiple advices are applied at a shared, join point.\ud In [1] we explained the problem of behavioral conflicts between aspects at shared join points. We presented an approach for the detection of behavioral conflicts. This approach is based on a novel abstraction model for representing the behavior of advice. This model allows the expression of both primitive and complex behavior in a simple manner. This supports automatic conflict detection. The presented approach employs a set of conflict detection rules, which can be used to detect generic, domain specific and application specific conflicts. The approach is implemented in Compose*, which is an implementation of Composition Filters. This application shows that a declarative advice language can be exploited for aiding automated conflict detection.\ud This paper discusses the need for a runtime extension to the described static approach. It also presents a possible implementation approach of such an extension in Compose*. This allows us to reason efficiently about the behavior of aspects. It also enables us to detect these conflicts with minimal overhead at runtime
    corecore