12,175 research outputs found

    Linear Codes associated to Determinantal Varieties

    Full text link
    We consider a class of linear codes associated to projective algebraic varieties defined by the vanishing of minors of a fixed size of a generic matrix. It is seen that the resulting code has only a small number of distinct weights. The case of varieties defined by the vanishing of 2 x 2 minors is considered in some detail. Here we obtain the complete weight distribution. Moreover, several generalized Hamming weights are determined explicitly and it is shown that the first few of them coincide with the distinct nonzero weights. One of the tools used is to determine the maximum possible number of matrices of rank 1 in a linear space of matrices of a given dimension over a finite field. In particular, we determine the structure and the maximum possible dimension of linear spaces of matrices in which every nonzero matrix has rank 1.Comment: 12 pages; to appear in Discrete Mat

    Encouraging persons to visit cultural sites through mini-games

    Get PDF
    Gamification has been recently proposed as a technique to improve user engagement in different activities, including visits to cultural sites and cultural tourism in general. We present the design, development and initial validation of the NEPTIS Poleis system, which consists of a mobile application and a Web interface for curators, allowing the definition, and subsequent fruition by users, of different minigames suitable for open-air assets

    QR Factorization of Tall and Skinny Matrices in a Grid Computing Environment

    Get PDF
    Previous studies have reported that common dense linear algebra operations do not achieve speed up by using multiple geographical sites of a computational grid. Because such operations are the building blocks of most scientific applications, conventional supercomputers are still strongly predominant in high-performance computing and the use of grids for speeding up large-scale scientific problems is limited to applications exhibiting parallelism at a higher level. We have identified two performance bottlenecks in the distributed memory algorithms implemented in ScaLAPACK, a state-of-the-art dense linear algebra library. First, because ScaLAPACK assumes a homogeneous communication network, the implementations of ScaLAPACK algorithms lack locality in their communication pattern. Second, the number of messages sent in the ScaLAPACK algorithms is significantly greater than other algorithms that trade flops for communication. In this paper, we present a new approach for computing a QR factorization -- one of the main dense linear algebra kernels -- of tall and skinny matrices in a grid computing environment that overcomes these two bottlenecks. Our contribution is to articulate a recently proposed algorithm (Communication Avoiding QR) with a topology-aware middleware (QCG-OMPI) in order to confine intensive communications (ScaLAPACK calls) within the different geographical sites. An experimental study conducted on the Grid'5000 platform shows that the resulting performance increases linearly with the number of geographical sites on large-scale problems (and is in particular consistently higher than ScaLAPACK's).Comment: Accepted at IPDPS10. (IEEE International Parallel & Distributed Processing Symposium 2010 in Atlanta, GA, USA.
    • …
    corecore