18,687 research outputs found

    A compiler approach to scalable concurrent program design

    Get PDF
    The programmer's most powerful tool for controlling complexity in program design is abstraction. We seek to use abstraction in the design of concurrent programs, so as to separate design decisions concerned with decomposition, communication, synchronization, mapping, granularity, and load balancing. This paper describes programming and compiler techniques intended to facilitate this design strategy. The programming techniques are based on a core programming notation with two important properties: the ability to separate concurrent programming concerns, and extensibility with reusable programmer-defined abstractions. The compiler techniques are based on a simple transformation system together with a set of compilation transformations and portable run-time support. The transformation system allows programmer-defined abstractions to be defined as source-to-source transformations that convert abstractions into the core notation. The same transformation system is used to apply compilation transformations that incrementally transform the core notation toward an abstract concurrent machine. This machine can be implemented on a variety of concurrent architectures using simple run-time support. The transformation, compilation, and run-time system techniques have been implemented and are incorporated in a public-domain program development toolkit. This toolkit operates on a wide variety of networked workstations, multicomputers, and shared-memory multiprocessors. It includes a program transformer, concurrent compiler, syntax checker, debugger, performance analyzer, and execution animator. A variety of substantial applications have been developed using the toolkit, in areas such as climate modeling and fluid dynamics

    A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging Tools

    Get PDF
    Today's complex software systems combine high-level concurrency models. Each model is used to solve a specific set of problems. Unfortunately, debuggers support only the low-level notions of threads and shared memory, forcing developers to reason about these notions instead of the high-level concurrency models they chose. This paper proposes a concurrency-agnostic debugger protocol that decouples the debugger from the concurrency models employed by the target application. As a result, the underlying language runtime can define custom breakpoints, stepping operations, and execution events for each concurrency model it supports, and a debugger can expose them without having to be specifically adapted. We evaluated the generality of the protocol by applying it to SOMns, a Newspeak implementation, which supports a diversity of concurrency models including communicating sequential processes, communicating event loops, threads and locks, fork/join parallelism, and software transactional memory. We implemented 21 breakpoints and 20 stepping operations for these concurrency models. For none of these, the debugger needed to be changed. Furthermore, we visualize all concurrent interactions independently of a specific concurrency model. To show that tooling for a specific concurrency model is possible, we visualize actor turns and message sends separately.Comment: International Symposium on Dynamic Language

    Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

    Get PDF
    Persistent memory makes it possible to recover in-memory data structures following a failure instead of rebuilding them from state saved in slow secondary storage. Implementing such recoverable data structures correctly is challenging as their underlying algorithms must deal with both parallelism and failures, which makes them especially susceptible to programming errors. Traditional proofs of correctness should therefore be combined with other methods, such as model checking or software testing, to minimize the likelihood of uncaught defects. This research focuses specifically on the algorithmic principles of software testing, particularly linearizability analysis, for multi-word persistent synchronization primitives such as conditional swap operations. We describe an efficient decision procedure for linearizability in this context, and discuss its practical applications in detecting previously-unknown bugs in implementations of multi-word persistent primitives

    Composing Software from Multiple Concerns: A Model and Composition Anomalies

    Get PDF
    Constructing software from components is considered to be a key requirement for managing the complexity of software. Separation of concerns makes only sense if the realizations of these concerns can be composed together effectively into a working program. Various publications have shown that composability of software is far from trivial and fails when components express complex behavior such as constraints, synchronization and history-sensitiveness. We believe that to address the composability problems, we need to understand and define the situations where composition fails. To this aim, in this paper we (a) introduce a general model of multi-dimensional concern composition, and (b) define so-called composition anomalies

    The Entity Registry System: Implementing 5-Star Linked Data Without the Web

    Full text link
    Linked Data applications often assume that connectivity to data repositories and entity resolution services are always available. This may not be a valid assumption in many cases. Indeed, there are about 4.5 billion people in the world who have no or limited Web access. Many data-driven applications may have a critical impact on the life of those people, but are inaccessible to those populations due to the architecture of today's data registries. In this paper, we propose and evaluate a new open-source system that can be used as a general-purpose entity registry suitable for deployment in poorly-connected or ad-hoc environments.Comment: 16 pages, authors are listed in alphabetical orde

    Evaluating Cache Coherent Shared Virtual Memory for Heterogeneous Multicore Chips

    Full text link
    The trend in industry is towards heterogeneous multicore processors (HMCs), including chips with CPUs and massively-threaded throughput-oriented processors (MTTOPs) such as GPUs. Although current homogeneous chips tightly couple the cores with cache-coherent shared virtual memory (CCSVM), this is not the communication paradigm used by any current HMC. In this paper, we present a CCSVM design for a CPU/MTTOP chip, as well as an extension of the pthreads programming model, called xthreads, for programming this HMC. Our goal is to evaluate the potential performance benefits of tightly coupling heterogeneous cores with CCSVM
    • …
    corecore