56,415 research outputs found

    Graph-Controlled Insertion-Deletion Systems

    Full text link
    In this article, we consider the operations of insertion and deletion working in a graph-controlled manner. We show that like in the case of context-free productions, the computational power is strictly increased when using a control graph: computational completeness can be obtained by systems with insertion or deletion rules involving at most two symbols in a contextual or in a context-free manner and with the control graph having only four nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    P Systems with Minimal Insertion and Deletion

    Get PDF
    In this paper we consider insertion-deletion P systems with priority of deletion over the insertion.We show that such systems with one symbol context-free insertion and deletion rules are able to generate PsRE. If one-symbol one-sided context is added to insertion or deletion rules but no priority is considered, then all recursively enumerable languages can be generated. The same result holds if a deletion of two symbols is permitted. We also show that the priority relation is very important and in its absence the corresponding class of P systems is strictly included in MAT

    Representations and characterizations of languages in Chomsky hierarchy by means of insertion-deletion systems

    Get PDF
    Insertion-deletion operations are much investigated in linguistics and in DNA computing and several characterizations of Turing computability were obtained in this framework. In this note we contribute to this research direction with a new characterization of this type, as well as with representations of regular and context-free languages, mainly starting from context-free insertion systems of as small as possible complexity. For instance, each recursively enumerable language L can be represented in a way similar to the celebrated Chomsky-Schützenberger representation of context-free languages, i.e., in the form L = h(L( ) ∩D), where is an insertion system of weight (3, 0) (at most three symbols are inserted in a context of length zero), h is a projection, and D is a Dyck language. A similar representation can be obtained for regular languages, involving insertion systems of weight (2,0) and star languages, as well as for context-free languages – this time using insertion systems of weight (3, 0) and star languages.Ministerio de Educación y Ciencia TIN2006-1342

    Combining Insertion and Deletion in RNA-editing Preserves Regularity

    Get PDF
    Inspired by RNA-editing as occurs in transcriptional processes in the living cell, we introduce an abstract notion of string adjustment, called guided rewriting. This formalism allows simultaneously inserting and deleting elements. We prove that guided rewriting preserves regularity: for every regular language its closure under guided rewriting is regular too. This contrasts an earlier abstraction of RNA-editing separating insertion and deletion for which it was proved that regularity is not preserved. The particular automaton construction here relies on an auxiliary notion of slice sequence which enables to sweep from left to right through a completed rewrite sequence.Comment: In Proceedings MeCBIC 2012, arXiv:1211.347

    Input-Driven Tissue P Automata

    Get PDF
    We introduce several variants of input-driven tissue P automata where the rules to be applied only depend on the input symbol. Both strings and multisets are considered as input objects; the strings are either read from an input tape or defined by the sequence of symbols taken in, and the multisets are given in an input cell at the beginning of a computation, enclosed in a vesicle. Additional symbols generated during a computation are stored in this vesicle, too. An input is accepted when the vesicle reaches a final cell and it is empty. The computational power of some variants of input-driven tissue P automata is illustrated by examples and compared with the power of the input-driven variants of other automata as register machines and counter automata

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure
    corecore