2,199 research outputs found

    An Alternative Conception of Tree-Adjoining Derivation

    Get PDF
    The precise formulation of derivation for tree-adjoining grammars has important ramifications for a wide variety of uses of the formalism, from syntactic analysis to semantic interpretation and statistical language modeling. We argue that the definition of tree-adjoining derivation must be reformulated in order to manifest the proper linguistic dependencies in derivations. The particular proposal is both precisely characterizable through a definition of TAG derivations as equivalence classes of ordered derivation trees, and computationally operational, by virtue of a compilation to linear indexed grammars together with an efficient algorithm for recognition and parsing according to the compiled grammar.Comment: 33 page

    Restricting the Weak-Generative Capacity of Synchronous Tree-Adjoining Grammars

    Get PDF
    The formalism of synchronous tree-adjoining grammars, a variant of standard tree-adjoining grammars (TAG), was intended to allow the use of TAGs for language transduction in addition to language specification. In previous work, the definition of the transduction relation defined by a synchronous TAG was given by appeal to an iterative rewriting process. The rewriting definition of derivation is problematic in that it greatly extends the expressivity of the formalism and makes the design of parsing algorithms difficult if not impossible. We introduce a simple, natural definition of synchronous tree-adjoining derivation, based on isomorphisms between standard tree-adjoining derivations, that avoids the expressivity and implementability problems of the original rewriting definition. The decrease in expressivity, which would otherwise make the method unusable, is offset by the incorporation of an alternative definition of standard tree-adjoining derivation, previously proposed for completely separate reasons, thereby making it practical to entertain using the natural definition of synchronous derivation. Nonetheless, some remaining problematic cases call for yet more flexibility in the definition; the isomorphism requirement may have to be relaxed. It remains for future research to tune the exact requirements on the allowable mappings.Comment: 21 pages, uses lingmacros.sty, psfig.sty, fullname.sty; minor typographical changes onl

    Acta Cybernetica : Tomus 6. Fasciculus 3.

    Get PDF

    An alternative conception of tree-adjoining derivation

    Get PDF
    The precise formulation of derivation for tree-adjoining grammars has important ramifications for a wide variety of uses of the formalism, from syntactic analysis to semantic interpretation and statistical language modeling. We argue that the definition of tree-adjoining derivation must be reformulated in order to manifest the proper linguistic dependencies in derivations. The particular proposal is both precisely characterizable, through a compilation to linear indexed grammars, and computationally operational, by virtue of an efficient algorithm for recognition and parsing.Engineering and Applied Science

    Graph grammars with string-regulated rewriting

    Get PDF
    Multicellular organisms undergo a complex developmental process, orchestrated by the genetic information in their cells, in order to form a newborn individual from a fertilized egg. This complex process, not completely understood yet, is believed to have a key role in generating the impressive biotic diversity of organisms found on earth. Inspired by mechanisms of Eukaryotic genetic expression, we propose and analyse graph grammars with string-regulated rewriting. In these grammatical systems a genome sequence is represented by a regulatory string, a graph corresponds to an organism, and a set of graph grammar rules represents different forms of implementing cell division. Accordingly, a graph derivation by the graph grammar resembles the developmental process of an organism. We give examples of the concept and compare its generative power to the power of the traditional context-free graph grammars. We demonstrate that the power of expression increases when genetic regulation is included in the model, as compared to non-regulated grammars. Additionally, we propose a hierarchy of string-regulated graph grammars, arranged by expressive power. These results highlight the key role that the transmission of regulatory information during development has in the emergence of biological diversity.D.L. was supported in part by a research stay fellowship at Otto-von-Guericke-Universität Magdeburg from the Spanish Ministerio de Educación

    Multiple Context-Free Tree Grammars: Lexicalization and Characterization

    Get PDF
    Multiple (simple) context-free tree grammars are investigated, where "simple" means "linear and nondeleting". Every multiple context-free tree grammar that is finitely ambiguous can be lexicalized; i.e., it can be transformed into an equivalent one (generating the same tree language) in which each rule of the grammar contains a lexical symbol. Due to this transformation, the rank of the nonterminals increases at most by 1, and the multiplicity (or fan-out) of the grammar increases at most by the maximal rank of the lexical symbols; in particular, the multiplicity does not increase when all lexical symbols have rank 0. Multiple context-free tree grammars have the same tree generating power as multi-component tree adjoining grammars (provided the latter can use a root-marker). Moreover, every multi-component tree adjoining grammar that is finitely ambiguous can be lexicalized. Multiple context-free tree grammars have the same string generating power as multiple context-free (string) grammars and polynomial time parsing algorithms. A tree language can be generated by a multiple context-free tree grammar if and only if it is the image of a regular tree language under a deterministic finite-copying macro tree transducer. Multiple context-free tree grammars can be used as a synchronous translation device.Comment: 78 pages, 13 figure

    Detecting event-related recurrences by symbolic analysis: Applications to human language processing

    Get PDF
    Quasistationarity is ubiquitous in complex dynamical systems. In brain dynamics there is ample evidence that event-related potentials reflect such quasistationary states. In order to detect them from time series, several segmentation techniques have been proposed. In this study we elaborate a recent approach for detecting quasistationary states as recurrence domains by means of recurrence analysis and subsequent symbolisation methods. As a result, recurrence domains are obtained as partition cells that can be further aligned and unified for different realisations. We address two pertinent problems of contemporary recurrence analysis and present possible solutions for them.Comment: 24 pages, 6 figures. Draft version to appear in Proc Royal Soc

    A Variant of Earley Parsing

    Full text link
    The Earley algorithm is a widely used parsing method in natural language processing applications. We introduce a variant of Earley parsing that is based on a ``delayed'' recognition of constituents. This allows us to start the recognition of a constituent only in cases in which all of its subconstituents have been found within the input string. This is particularly advantageous in several cases in which partial analysis of a constituent cannot be completed and in general in all cases of productions sharing some suffix of their right-hand sides (even for different left-hand side nonterminals). Although the two algorithms result in the same asymptotic time and space complexity, from a practical perspective our algorithm improves the time and space requirements of the original method, as shown by reported experimental results.Comment: 12 pages, 1 Postscript figure, uses psfig.tex and llncs.st

    Answering Regular Path Queries on Workflow Provenance

    Full text link
    This paper proposes a novel approach for efficiently evaluating regular path queries over provenance graphs of workflows that may include recursion. The approach assumes that an execution g of a workflow G is labeled with query-agnostic reachability labels using an existing technique. At query time, given g, G and a regular path query R, the approach decomposes R into a set of subqueries R1, ..., Rk that are safe for G. For each safe subquery Ri, G is rewritten so that, using the reachability labels of nodes in g, whether or not there is a path which matches Ri between two nodes can be decided in constant time. The results of each safe subquery are then composed, possibly with some small unsafe remainder, to produce an answer to R. The approach results in an algorithm that significantly reduces the number of subqueries k over existing techniques by increasing their size and complexity, and that evaluates each subquery in time bounded by its input and output size. Experimental results demonstrate the benefit of this approach
    • …
    corecore