47 research outputs found

    A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10278-014-9728-6.This paper describes a methodology for redesigning the clinical processes to manage diagnosis, follow-up, and response to treatment episodes of breast cancer. This methodology includes three fundamental elements: (1) identification of similar and contrasting cases that may be of clinical relevance based upon a target study, (2) codification of reports with standard medical terminologies, and (3) linking and indexing the structured reports obtained with different techniques in a common system. The combination of these elements should lead to improvements in the clinical management of breast cancer patients. The motivation for this work is the adaptation of the clinical processes for breast cancer created by the Valencian Community health authorities to the new techniques available for data processing. To achieve this adaptation, it was necessary to design nine Digital Imaging and Communications in Medicine (DICOM) structured report templates: six diagnosis templates and three summary templates that combine reports from clinical episodes. A prototype system is also described that links the lesion to the reports. Preliminary tests of the prototype have shown that the interoperability among the report templates allows correlating parameters from different reports. Further work is in progress to improve the methodology in order that it can be applied to clinical practice.We thank the subject matter experts for sharing their insights through this study. We are especially appreciative of the efforts of the Radiology Unit and Medical Oncology Unit teams at the University Hospital Dr. Peset. This work was partially supported by the Vicerectorat d'Investigacio de la Universitat Politecnica de Valencia (UPVLC) to develop the project "Mejora del proceso diagnostico del cancer de mama" with reference UPV-FE-2013-8.Medina, R.; Torres Serrano, E.; Segrelles Quilis, JD.; Blanquer Espert, I.; Martí Bonmatí, L.; Almenar-Cubells, D. (2015). A Systematic Approach for Using DICOM Structured Reports in Clinical Processes: Focus on Breast Cancer. Journal of Digital Imaging. 28(2):132-145. doi:10.1007/s10278-014-9728-6S132145282Ratib O: Imaging informatics: From image management to image navigation. Yearb Med Inform 2009; 167–172Oakley J. Digital Imaging: A Primer for Radiographers, Radiologists and Health Care Professionals. Cambridge University Press, 2003.Prokosch HU, Dudeck J: Hospital information systems: Design and development characteristics, impact and future architecture. Elsevier health sciences, 1995Foster I, Kesselman C, Tuecke S. The anatomy of the grid: Enabling scalable virtual organizations. Int J High Perform Comput Appl 2001; 15(3):200–222.Oram A: Peer-to-Peer: Harnessing the power of disruptive technologies. O’Reilly Media, 2001National Institute of Standards and Technology. The NIST Definition of Cloud Computing. 2011. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf (accessed 29 Jan 2013)Oster S, Langella S, Hastings S, Ervin D, Madduri R, Phillips J, Kurc T, Siebenlist F, Covitz P, Shanbhag K, Foster I, Saltz J. caGrid 1.0: An enterprise grid infrastructure for biomedical research. J Am Med Inform Assoc 2008; 15:138–149.Natter MD, Quan J, Ortiz DM, et al. An i2b2-based, generalizable, open source, self-scaling chronic disease registry. J Am Med Inform Assoc 2013; 20:172–179.Ohno-Machado L, Bafna V, Boxwala AA, et al. iDASH: Integrating data for analysis, anonymization, and sharing. J Am Med Inform Assoc 2012; 19:196–201.Channin DS, Mongkolwat P, Kleper V, Rubin DL. Computing human image annotation. Conf Proc IEEE Eng Med Biol Soc 2009; 1:7065–8.Sittig DF, Wright A, Osheroff JA, et al. Grand challenges in clinical decision support. J Biomed Inform 2008; 41(2):387–392.Wagholikar KB, Sundararajan V, Deshpande AW. Modeling paradigms for medical diagnostic decision support: a survey and future directions. J Med Syst 2012; 36(5):3029–3049.Rubin DL. Creating and curating a terminology for radiology: Ontology modeling and analysis. J Digit Imaging 2008; 21(4):355–362.Kahn CE, Jr., Langlotz CP, Burnside ES, Carrino JA, Channin DS, Hovsepian DM, et al. Toward best practices in radiology reporting. Radiology 2009; 252(3):852–856.Taira PK, Soderlang SG, JAbovits RM. Automatic structuring of radiology free-text reports. Radiographics 2001; 21(1); 237–245.Fujii H, Yamagishi H, Ando Y, Tsukamoto N, Kawaguchi O, Kasamatsu T, et al. Structuring of free-text diagnostic report. Stud. Health Technol. Inform. 2007; 129: 669–673.Murff HJ, FitzHenry F, Matheny ME, Gentry N, Kotter KL, Crimin K, Dittus RS, Rosen AK, Elkin PL, Brown SH, Speroff T. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011; 306(8):848–855.Clunie DA: DICOM structured reporting. PixelMed Publishing, 2000D’Avolio LW, Nguyen TM, Farwell WR, Chen Y, Fitzmeyer F, Harris OM, Fiore LD. Evaluation of a generalizable approach to clinical information retrieval using the automated retrieval console (ARC). J Am Med Inform Assoc 2012; 17:375–382.Napel SA, Beaulieu CF, Redriguez C, Cui J, Xu J, Grupta A, et al. Automated retrieval of CT images of liver lesions on the basis of image similarity: Method and preliminary results. Radiology 2010; 256(1): 243–252.Langlotz CP. RadLex: A new method for indexing online educational materials. Radiographics 2006; 26(6):1595–1597.Crestania F, Vegas J, de la Fuente P. A graphical user interface for the retrieval of hierarchically structured documents. Inf Process Manag 2004; 40(2):269–289.Weiss DL, Langlotz CP. Structured reporting: Patient care enhancement or productivity nightmare? Radiology 2008. 249(3):739–747.Yen PY, Bakken S. Review of health information technology usability study methodologies. J Am Med Inform Assoc 2012; 19(3):413–422.Patrick R, Julien G, Christian L, Antoine G. Automatic medical encoding with SNOMED categories. BMC Med Inform Decis Mak 2008; 8(Suppl 1): S1–S6.Lopez-Garcia P, Boeker M, Illarramendi A, Schulz S. Usability-driven pruning of large ontologies: The case of SNOMED CT, J Am Med Inform Assoc 2012; 19:e102-e109.World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision. http://apps.who.int/classifications/apps/icd/icd10online/ (accessed 29 Jan 2013)American College of Radiology (ACR) Breast Imaging Reporting and Data System Atlas (BI-RADS® Atlas)World Health Organization. International Classification of Diseases for Oncology, 3rd Edition (ICD-O-3). http://www.who.int/classifications/icd/adaptations/oncology/en/index.html (accessed 29 Jan 2013)Greene FL. TNM: Our language of cancer. CA Cancer J Clin 2004; 54(3):129–130.American Joint Committee of Cancer (AJCC). AJCC Cancer Staging Manual. Seventh Edition. Springer, 2010Hussein R, Engelmann U, Schroeter A, Meinzer HP. DICOM structured reporting: Part 1. Overview and characteristics, Radiographics 2004; 24(3):891–896.Sluis D, Lee KP, Mankovich N. DICOM SR - integrating structured data into clinical information systems. Medicamundi 2002; 46(2):31–36.Percha B, Nassif H, Lipson J, Burnside E, Rubin D. Automatic classification of mammography reports by BI-RADS breast tissue composition class. J Am Med Inform Assoc 2012; 19(5):913–916.Ciatto S, Houssami N, Apruzzese A, Bassetti E, Brancato B, Carozzi F, Catarzi S, Lamberini MP, Marcelli G, Pellizzoni R, Pesce B, Risso G, Russo F, Scorsolini A. Reader variability in reporting breast imaging according to BI-RADS assessment categories (the Florence experience). Breast 2006; 15(1):44–51.National Electrical Manufacturers Association (NEMA). Digital Imaging and Communications in Medicine (DICOM). Part 16: Content Mapping Resource. http://medical.nema.org/dicom/2004/04_16PU.PDF (accessed 29 Jan 2013)Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, Shvo AS. HL7 clinical document architecture, release 2. J Am Med Inform Assoc 2006; 13:30–39.Blanquer I, Hernández V, Meseguer JE, Segrelles D. Content-based organisation of virtual repositories of DICOM objects. Future Gener Comput Syst 2009; 25(6):627–637.Blanquer I, Hernández V, Segrelles D, Torres E. Enhancing privacy and authorization control scalability in the grid through ontologies. IEEE Trans Inf Technol Biomed 2009; 12(1):16–24.Salavert J, Maestre C, Segrelles D, Blanquer I, Hernández V, Medina R, Martí L: Grid prototype to support cancer of breast diagnostics in clinic practice. Proc of the 4th. Iberian Grid Infrastructure Conf. Netbiblo, 2010Segrelles D, Franco JM, Medina R, Blanquer I, Salavert J, Hernandez V, Martí L, Díaz G, Ramos R, Guevara MA, González N, Loureiro J, Ramos I. Exchanging data for breast cancer diagnosis on heterogeneous grid platforms. Computing and Informatics 2012; 31(1):3–15.Ali MS, Consens M, Lalmas M. Extended structural relevance framework: A framework for evaluating structured document retrieval. Inf Retrieval 2012; 15:558–590.Welter P, Riesmeier J, Fischer B, Grouls C, Kuhl C, Deserno, TM. Bridging the integration gap between imaging and information systems: A uniform data concept for content-based image retrieval in computer-aided diagnosis. J Am Med Inform Assoc 2011; 18:506–510.Jenkins CW. Application prototyping: A case study. Perform Eval Rev 1981; 10(1):21–27.Generalitat Valenciana. Conselleria de Sanitat. Oncoguía de Cáncer de Mama Comunidad Valenciana. http://publicaciones.san.gva.es/publicaciones/documentos/V.2478-2006.pdf (accessed 29 Jan 2013)Maestre C, Segrelles-Quilis JD, Torres E, Blanquer I, Medina R, Hernández V, Martí L. Assessing the usability of a science gateway for medical knowledge bases with TRENCADIS. J Grid Computing 2012; 10:665–688.Lewis J. IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. Int J Hum-Comput Interact 1995; 7(1):57–78.Lewis JR. Psychometric evaluation of the PSSUQ using data from five years of usability studies. Int J Hum-Comput Interact 2002; 14(3–4):463–488.Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965; 52(3–4):591–611.Chhatwal J, Alagoz O, Lindstrom MJ, Kahn Jr CE, Shaffer KA, Burnside ES. A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. AJR Am J Roentgenol 2009; 192:1117–1127

    Improving knowledge management through the support of image examination and data annotation using DICOM structured reporting

    Get PDF
    [EN] An important effort has been invested on improving the image diagnosis process in different medical areas using information technologies. The field of medical imaging involves two main data types: medical imaging and reports. Developments based on the DICOM standard have demonstrated to be a convenient and widespread solution among the medical community. The main objective of this work is to design a Web application prototype that will be able to improve diagnosis and follow-on of breast cancer patients. It is based on TRENCADIS middleware, which provides a knowledge-oriented storage model composed by federated repositories of DICOM image studies and DICOM-SR medical reports. The full structure and contents of the diagnosis reports are used as metadata for indexing images. The TRENCADIS infrastructure takes full advantage of Grid technologies by deploying multi-resource grid services that enable multiple views (reports schemes) of the knowledge database. The paper presents a real deployment of such Web application prototype in the Dr. Peset Hospital providing radiologists with a tool to create, store and search diagnostic reports based on breast cancer explorations (mammography, magnetic resonance, ultrasound, pre-surgery biopsy and post-surgery biopsy), improving support for diagnostics decisions. A technical details for use cases (outlining enhanced multi-resource grid services communication and processing steps) and interactions between actors and the deployed prototype are described. As a result, information is more structured, the logic is clearer, network messages have been reduced and, in general, the system is more resistant to failures.The authors wish to thank the financial support received from The Spanish Ministry of Education and Science to develop the project "CodeCloud", with reference TIN2010-17804.Salavert Torres, J.; Segrelles Quilis, JD.; Blanquer Espert, I.; Hernández García, V. (2012). Improving knowledge management through the support of image examination and data annotation using DICOM structured reporting. Journal of Biomedical Informatics. 45(6):1066-1074. https://doi.org/10.1016/j.jbi.2012.07.004S1066107445

    Towards Interoperability in E-health Systems: a three-dimensional approach based on standards and semantics

    Get PDF
    Proceedings of: HEALTHINF 2009 (International Conference on Helath Informatics), Porto (Portugal), January 14-17, 2009, is part of BIOSTEC (Intemational Joint Conference on Biomedical Engineering Systems and Technologies)The interoperability problem in eHealth can only be addressed by mean of combining standards and technology. However, these alone do not suffice. An appropiate framework that articulates such combination is required. In this paper, we adopt a three-dimensional (information, conference and inference) approach for such framework, based on OWL as formal language for terminological and ontological health resources, SNOMED CT as lexical backbone for all such resources, and the standard CEN 13606 for representing EHRs. Based on tha framewok, we propose a novel form for creating and supporting networks of clinical terminologies. Additionally, we propose a number of software modules to semantically process and exploit EHRs, including NLP-based search and inference, wich can support medical applications in heterogeneous and distributed eHealth systems.This work has been funded as part of the Spanish nationally funded projects ISSE (FIT-350300-2007-75) and CISEP (FIT-350301-2007-18). We also acknowledge IST-2005-027595 EU project NeO

    A Linguistic Approach to Aligning Representations of Human Anatomy and Radiology

    Get PDF
    To realize applications such as semantic medical image search different domain ontologies are necessary that provide complementary knowledge about human anatomy and radiology. Consequently, integration of these different but nevertheless related types of medical knowledge from disparate domain ontologies becomes necessary. Ontology alignment is one way to achieve this objective. Our approach for aligning medical ontologies has three aspects: (a) linguistic-based, (b) corpus-based, and (c) dialogue-based. We briefly report on the linguistic alignment (i.e. the first aspect) using an ontology on human anatomy and a terminology on radiolog

    A Linguistic Approach to Aligning Representations of Human Anatomy and Radiology

    Get PDF
    To realize applications such as semantic medical image search different domain ontologies are necessary that provide complementary knowledge about human anatomy and radiology. Consequently, integration of these different but nevertheless related types of medical knowledge from disparate domain ontologies becomes necessary. Ontology alignment is one way to achieve this objective. Our approach for aligning medical ontologies has three aspects: (a) linguistic-based, (b) corpus-based, and (c) dialogue-based. We briefly report on the linguistic alignment (i.e. the first aspect) using an ontology on human anatomy and a terminology on radiology

    Current Challenges in the Application of Algorithms in Multi-institutional Clinical Settings

    Get PDF
    The Coronavirus disease pandemic has highlighted the importance of artificial intelligence in multi-institutional clinical settings. Particularly in situations where the healthcare system is overloaded, and a lot of data is generated, artificial intelligence has great potential to provide automated solutions and to unlock the untapped potential of acquired data. This includes the areas of care, logistics, and diagnosis. For example, automated decision support applications could tremendously help physicians in their daily clinical routine. Especially in radiology and oncology, the exponential growth of imaging data, triggered by a rising number of patients, leads to a permanent overload of the healthcare system, making the use of artificial intelligence inevitable. However, the efficient and advantageous application of artificial intelligence in multi-institutional clinical settings faces several challenges, such as accountability and regulation hurdles, implementation challenges, and fairness considerations. This work focuses on the implementation challenges, which include the following questions: How to ensure well-curated and standardized data, how do algorithms from other domains perform on multi-institutional medical datasets, and how to train more robust and generalizable models? Also, questions of how to interpret results and whether there exist correlations between the performance of the models and the characteristics of the underlying data are part of the work. Therefore, besides presenting a technical solution for manual data annotation and tagging for medical images, a real-world federated learning implementation for image segmentation is introduced. Experiments on a multi-institutional prostate magnetic resonance imaging dataset showcase that models trained by federated learning can achieve similar performance to training on pooled data. Furthermore, Natural Language Processing algorithms with the tasks of semantic textual similarity, text classification, and text summarization are applied to multi-institutional, structured and free-text, oncology reports. The results show that performance gains are achieved by customizing state-of-the-art algorithms to the peculiarities of the medical datasets, such as the occurrence of medications, numbers, or dates. In addition, performance influences are observed depending on the characteristics of the data, such as lexical complexity. The generated results, human baselines, and retrospective human evaluations demonstrate that artificial intelligence algorithms have great potential for use in clinical settings. However, due to the difficulty of processing domain-specific data, there still exists a performance gap between the algorithms and the medical experts. In the future, it is therefore essential to improve the interoperability and standardization of data, as well as to continue working on algorithms to perform well on medical, possibly, domain-shifted data from multiple clinical centers

    Sistemas interativos e distribuídos para telemedicina

    Get PDF
    doutoramento Ciências da ComputaçãoDurante as últimas décadas, as organizações de saúde têm vindo a adotar continuadamente as tecnologias de informação para melhorar o funcionamento dos seus serviços. Recentemente, em parte devido à crise financeira, algumas reformas no sector de saúde incentivaram o aparecimento de novas soluções de telemedicina para otimizar a utilização de recursos humanos e de equipamentos. Algumas tecnologias como a computação em nuvem, a computação móvel e os sistemas Web, têm sido importantes para o sucesso destas novas aplicações de telemedicina. As funcionalidades emergentes de computação distribuída facilitam a ligação de comunidades médicas, promovem serviços de telemedicina e a colaboração em tempo real. Também são evidentes algumas vantagens que os dispositivos móveis podem introduzir, tais como facilitar o trabalho remoto a qualquer hora e em qualquer lugar. Por outro lado, muitas funcionalidades que se tornaram comuns nas redes sociais, tais como a partilha de dados, a troca de mensagens, os fóruns de discussão e a videoconferência, têm o potencial para promover a colaboração no sector da saúde. Esta tese teve como objetivo principal investigar soluções computacionais mais ágeis que permitam promover a partilha de dados clínicos e facilitar a criação de fluxos de trabalho colaborativos em radiologia. Através da exploração das atuais tecnologias Web e de computação móvel, concebemos uma solução ubíqua para a visualização de imagens médicas e desenvolvemos um sistema colaborativo para a área de radiologia, baseado na tecnologia da computação em nuvem. Neste percurso, foram investigadas metodologias de mineração de texto, de representação semântica e de recuperação de informação baseada no conteúdo da imagem. Para garantir a privacidade dos pacientes e agilizar o processo de partilha de dados em ambientes colaborativos, propomos ainda uma metodologia que usa aprendizagem automática para anonimizar as imagens médicasDuring the last decades, healthcare organizations have been increasingly relying on information technologies to improve their services. At the same time, the optimization of resources, both professionals and equipment, have promoted the emergence of telemedicine solutions. Some technologies including cloud computing, mobile computing, web systems and distributed computing can be used to facilitate the creation of medical communities, and the promotion of telemedicine services and real-time collaboration. On the other hand, many features that have become commonplace in social networks, such as data sharing, message exchange, discussion forums, and a videoconference, have also the potential to foster collaboration in the health sector. The main objective of this research work was to investigate computational solutions that allow us to promote the sharing of clinical data and to facilitate the creation of collaborative workflows in radiology. By exploring computing and mobile computing technologies, we have designed a solution for medical imaging visualization, and developed a collaborative system for radiology, based on cloud computing technology. To extract more information from data, we investigated several methodologies such as text mining, semantic representation, content-based information retrieval. Finally, to ensure patient privacy and to streamline the data sharing in collaborative environments, we propose a machine learning methodology to anonymize medical images

    Recuperação de informação multimodal em repositórios de imagem médica

    Get PDF
    The proliferation of digital medical imaging modalities in hospitals and other diagnostic facilities has created huge repositories of valuable data, often not fully explored. Moreover, the past few years show a growing trend of data production. As such, studying new ways to index, process and retrieve medical images becomes an important subject to be addressed by the wider community of radiologists, scientists and engineers. Content-based image retrieval, which encompasses various methods, can exploit the visual information of a medical imaging archive, and is known to be beneficial to practitioners and researchers. However, the integration of the latest systems for medical image retrieval into clinical workflows is still rare, and their effectiveness still show room for improvement. This thesis proposes solutions and methods for multimodal information retrieval, in the context of medical imaging repositories. The major contributions are a search engine for medical imaging studies supporting multimodal queries in an extensible archive; a framework for automated labeling of medical images for content discovery; and an assessment and proposal of feature learning techniques for concept detection from medical images, exhibiting greater potential than feature extraction algorithms that were pertinently used in similar tasks. These contributions, each in their own dimension, seek to narrow the scientific and technical gap towards the development and adoption of novel multimodal medical image retrieval systems, to ultimately become part of the workflows of medical practitioners, teachers, and researchers in healthcare.A proliferação de modalidades de imagem médica digital, em hospitais, clínicas e outros centros de diagnóstico, levou à criação de enormes repositórios de dados, frequentemente não explorados na sua totalidade. Além disso, os últimos anos revelam, claramente, uma tendência para o crescimento da produção de dados. Portanto, torna-se importante estudar novas maneiras de indexar, processar e recuperar imagens médicas, por parte da comunidade alargada de radiologistas, cientistas e engenheiros. A recuperação de imagens baseada em conteúdo, que envolve uma grande variedade de métodos, permite a exploração da informação visual num arquivo de imagem médica, o que traz benefícios para os médicos e investigadores. Contudo, a integração destas soluções nos fluxos de trabalho é ainda rara e a eficácia dos mais recentes sistemas de recuperação de imagem médica pode ser melhorada. A presente tese propõe soluções e métodos para recuperação de informação multimodal, no contexto de repositórios de imagem médica. As contribuições principais são as seguintes: um motor de pesquisa para estudos de imagem médica com suporte a pesquisas multimodais num arquivo extensível; uma estrutura para a anotação automática de imagens; e uma avaliação e proposta de técnicas de representation learning para deteção automática de conceitos em imagens médicas, exibindo maior potencial do que as técnicas de extração de features visuais outrora pertinentes em tarefas semelhantes. Estas contribuições procuram reduzir as dificuldades técnicas e científicas para o desenvolvimento e adoção de sistemas modernos de recuperação de imagem médica multimodal, de modo a que estes façam finalmente parte das ferramentas típicas dos profissionais, professores e investigadores da área da saúde.Programa Doutoral em Informátic

    Dione: An OWL representation of ICD-10-CM for classifying patients’ diseases

    Get PDF
    corecore