1,010 research outputs found

    Curriculum semi-supervised segmentation

    Full text link
    This study investigates a curriculum-style strategy for semi-supervised CNN segmentation, which devises a regression network to learn image-level information such as the size of a target region. These regressions are used to effectively regularize the segmentation network, constraining softmax predictions of the unlabeled images to match the inferred label distributions. Our framework is based on inequality constraints that tolerate uncertainties with inferred knowledge, e.g., regressed region size, and can be employed for a large variety of region attributes. We evaluated our proposed strategy for left ventricle segmentation in magnetic resonance images (MRI), and compared it to standard proposal-based semi-supervision strategies. Our strategy leverages unlabeled data in more efficiently, and achieves very competitive results, approaching the performance of full-supervision.Comment: Accepted as paper as MICCAI 2O1

    Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions

    Full text link
    This study investigates the optimization aspects of imposing hard inequality constraints on the outputs of CNNs. In the context of deep networks, constraints are commonly handled with penalties for their simplicity, and despite their well-known limitations. Lagrangian-dual optimization has been largely avoided, except for a few recent works, mainly due to the computational complexity and stability/convergence issues caused by alternating explicit dual updates/projections and stochastic optimization. Several studies showed that, surprisingly for deep CNNs, the theoretical and practical advantages of Lagrangian optimization over penalties do not materialize in practice. We propose log-barrier extensions, which approximate Lagrangian optimization of constrained-CNN problems with a sequence of unconstrained losses. Unlike standard interior-point and log-barrier methods, our formulation does not need an initial feasible solution. Furthermore, we provide a new technical result, which shows that the proposed extensions yield an upper bound on the duality gap. This generalizes the duality-gap result of standard log-barriers, yielding sub-optimality certificates for feasible solutions. While sub-optimality is not guaranteed for non-convex problems, our result shows that log-barrier extensions are a principled way to approximate Lagrangian optimization for constrained CNNs via implicit dual variables. We report comprehensive weakly supervised segmentation experiments, with various constraints, showing that our formulation outperforms substantially the existing constrained-CNN methods, both in terms of accuracy, constraint satisfaction and training stability, more so when dealing with a large number of constraints

    CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images

    Full text link
    The visual examination of tissue biopsy sections is fundamental for cancer diagnosis, with pathologists analyzing sections at multiple magnifications to discern tumor cells and their subtypes. However, existing attention-based multiple instance learning (MIL) models, used for analyzing Whole Slide Images (WSIs) in cancer diagnostics, often overlook the contextual information of tumor and neighboring tiles, leading to misclassifications. To address this, we propose the Context-Aware Multiple Instance Learning (CAMIL) architecture. CAMIL incorporates neighbor-constrained attention to consider dependencies among tiles within a WSI and integrates contextual constraints as prior knowledge into the MIL model. We evaluated CAMIL on subtyping non-small cell lung cancer (TCGA-NSCLC) and detecting lymph node (CAMELYON16) metastasis, achieving test AUCs of 0.959\% and 0.975\%, respectively, outperforming other state-of-the-art methods. Additionally, CAMIL enhances model interpretability by identifying regions of high diagnostic value.Comment: 16 pages, 4 figure
    • …
    corecore