3,603 research outputs found

    Unsupervised Alignment-based Iterative Evidence Retrieval for Multi-hop Question Answering

    Full text link
    Evidence retrieval is a critical stage of question answering (QA), necessary not only to improve performance, but also to explain the decisions of the corresponding QA method. We introduce a simple, fast, and unsupervised iterative evidence retrieval method, which relies on three ideas: (a) an unsupervised alignment approach to soft-align questions and answers with justification sentences using only GloVe embeddings, (b) an iterative process that reformulates queries focusing on terms that are not covered by existing justifications, which (c) a stopping criterion that terminates retrieval when the terms in the given question and candidate answers are covered by the retrieved justifications. Despite its simplicity, our approach outperforms all the previous methods (including supervised methods) on the evidence selection task on two datasets: MultiRC and QASC. When these evidence sentences are fed into a RoBERTa answer classification component, we achieve state-of-the-art QA performance on these two datasets.Comment: Accepted at ACL 2020 as a long conference pape

    Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search

    Full text link
    Despite substantial interest in applications of neural networks to information retrieval, neural ranking models have only been applied to standard ad hoc retrieval tasks over web pages and newswire documents. This paper proposes MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Network) a novel neural ranking model specifically designed for ranking short social media posts. We identify document length, informal language, and heterogeneous relevance signals as features that distinguish documents in our domain, and present a model specifically designed with these characteristics in mind. Our model uses hierarchical convolutional layers to learn latent semantic soft-match relevance signals at the character, word, and phrase levels. A pooling-based similarity measurement layer integrates evidence from multiple types of matches between the query, the social media post, as well as URLs contained in the post. Extensive experiments using Twitter data from the TREC Microblog Tracks 2011--2014 show that our model significantly outperforms prior feature-based as well and existing neural ranking models. To our best knowledge, this paper presents the first substantial work tackling search over social media posts using neural ranking models.Comment: AAAI 2019, 10 page

    Using Windmill Expansion for Document Retrieval

    No full text
    SEMIOTIKS aims to utilise online information to support the crucial decision–making of those military and civilian agencies involved in the humanitarian removal of landmines in areas of conflict throughout the world. An analysis of the type of information required for such a task has given rise to four main areas of research: information retrieval, document annotation, summarisation and visualisation. The first stage of the research has focused on information retrieval, and a new algorithm, “Windmill Expansion” (WE) has been proposed to do this. The algorithm uses retrieval feedback techniques for automated query expansion in order to improve the effectiveness of information retrieval. WE is based on the extraction of human–generated written phases for automated query expansion. Top and Second Level expansion terms have been generated and their usefulness evaluated. The evaluation has concentrated on measuring the degree of overlap between the retrieved URLs. The less the overlap, the more useful the information provided. The Top Level expansion terms were found to provide 90% of useful URLs, and the Second Level 83% of useful URLs. Although there was a decline of useful URLs from the Top Level to the Second Level, the quantity of relevant information retrieved has increased. The originality of SEMIOTIKS lies in its use of the WE algorithm to help non–domain specific experts automatically explore domain words for relevant and precise information retrieval

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation
    • 

    corecore