652 research outputs found

    Design, Development and Evaluation of 5G-Enabled Vehicular Services:The 5G-HEART Perspective

    Get PDF
    The ongoing transition towards 5G technology expedites the emergence of a variety of mobile applications that pertain to different vertical industries. Delivering on the key commitment of 5G, these diverse service streams, along with their distinct requirements, should be facilitated under the same unified network infrastructure. Consequently, in order to unleash the benefits brought by 5G technology, a holistic approach towards the requirement analysis and the design, development, and evaluation of multiple concurrent vertical services should be followed. In this paper, we focus on the Transport vertical industry, and we study four novel vehicular service categories, each one consisting of one or more related specific scenarios, within the framework of the “5G Health, Aquaculture and Transport (5G-HEART)” 5G PPP ICT-19 (Phase 3) project. In contrast to the majority of the literature, we provide a holistic overview of the overall life-cycle management required for the realization of the examined vehicular use cases. This comprises the definition and analysis of the network Key Performance Indicators (KPIs) resulting from high-level user requirements and their interpretation in terms of the underlying network infrastructure tasked with meeting their conflicting or converging needs. Our approach is complemented by the experimental investigation of the real unified 5G pilot’s characteristics that enable the delivery of the considered vehicular services and the initial trialling results that verify the effectiveness and feasibility of the presented theoretical analysis

    Reliable and efficient data dissemination schemein VANET: a review

    Get PDF
    Vehicular ad-hoc network (VANET), identified as a mobile ad hoc network MANETs with several added constraints. Basically, in VANETs, the network is established on the fly based on the availability of vehicles on roads and supporting infrastructures along the roads, such as base stations. Vehicles and road-side infrastructures are required to provide communication facilities, particularly when enough vehicles are not available on the roads for effective communication. VANETs are crucial for providing a wide range of safety and non-safety applications to road users. However, the specific fundamental problem in VANET is the challenge of creating effective communication between two fast-moving vehicles. Therefore, message routing is an issue for many safety and non-safety of VANETs applications. The challenge in designing a robust but reliable message dissemination technique is primarily due to the stringent QoS requirements of the VANETs safety applications. This paper investigated various methods and conducted literature on an idea to develop a model for efficient and reliable message dissemination routing techniques in VANET

    Optimizations in Heterogeneous Mobile Networks

    Get PDF

    Approximation of the IEEE 802.11p standard using commercial off-the-shelf IEEE 802.11a hardware

    Get PDF
    IEEE 802.11p hardware is hard to find. Previous research efforts often relied on project-specific prototype implementations which are characterized by a high cost and are not always available to the entire research community. Commercially available turnkey implementations are rare and quite expensive compared to commercial of-the-shelf (COTS) IEEE 802.11a/b/g hardware. However, the difference between the IEEE 802.11p amendment and the other IEEE 802.11 standards is quite small. It can be seen as a combination of the IEEE 802.11a and IEEE 802.11e standards, with some specific adjustments. This paper presents how an approximation of the IEEE 802.11p standard can be implemented using COTS IEEE 802.11a hardware and some specific software adjustments. This way, vehicular test infrastructures can be established in a much more cost effective manner, and existing IEEE 802.11 wireless testbeds can be used to support VANET research

    Capacity Dimensioning for Aeronautical Communications in North Atlantic Corridor

    Get PDF
    In the context of the Internet everywhere paradigm, aircraft passengers expect to get connectivity during flights. Several solutions based either on cellular networks in continental area or on satellite links have been designed and even deployed for some of them. But to face the increasing number of users and expected services, a migration to future satellite system such as Inmarsat's Ka band Global Xpress system have been planned. The considered geographical area of the present study is the north Atlantic corridor. In this service zone, the specific structure of aeronautical traffic must be taken into account. NAT (North Atlantic Tracks) are oceanic routes between North America and Europe that are periodically defined considering weather and wind conditions. This explains why the exact locations of the tracks change daily according to weather and also traffic demands. On each continent, specific air traffic control is provided in order to manage entrance and movement along these tracks. The proposed study makes the assumption of a flexible global coverage provided by multi beam Ka band satellites that operate in geosynchronous orbit. Aircraft flying in the north Atlantic corridor use the system in order to offer in-flight connectivity for airline passengers. Doing so, passengers may access common Internet services, namely web browsing, electronic mail, or file transfer. More specific applications for pilots and companies are also taken in consideration enhanced with new services such as real time black box data streaming. In order to assess induced traffic load and instantaneous required capacities in each spot beam, a simulation model has been specifically developed by ENAC and ISAE with Opnet Modeler software

    Design and prototype of a train-to-wayside communication architecture

    Get PDF
    Telecommunication has become very important in modern society and seems to be almost omnipresent, making daily life easier, more pleasant and connecting people everywhere. It does not only connect people, but also machines, enhancing the efficiency of automated tasks and monitoring automated processes. In this context the IBBT (Interdisciplinary Institute for BroadBand Technology) project TRACK (TRain Applications over an advanced Communication networK), sets the definition and prototyping of an end-to-end train-to-wayside communication architecture as one of the main research goals. The architecture provides networking capabilities for train monitoring, personnel applications and passenger Internet services. In the context of the project a prototype framework was developed to give a complete functioning demonstrator. Every aspect: tunneling and mobility, performance enhancements, and priority and quality of service were taken into consideration. In contrast to other research in this area, which has given mostly high-level overviews, TRACK resulted in a detailed architecture with all different elements present

    On the automation of RAN slicing provisioning and cell planning in NG-RAN

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Network slicing is a fundamental feature of 5G systems that facilitates the provision of particular system behaviours adapted to specific service/application domains on top of a common network infrastructure. While significant progress has already been achieved at specification level by 3GPP with regard to the functional support of network slicing, management solutions for the exploitation of these capabilities in the NG-RAN are still at a very incipient stage. In this context, this paper firstly presents a functional framework for the management of network slicing for a NG-RAN infrastructure, identifying the necessary information models and interfaces to support the dynamic provisioning of RAN slices. On this basis, the feasibility to automate the provisioning of RAN slices is discussed. Furthermore, a self-planning solution is presented to illustrate how a traditional network management process such as planning is expected to evolve to cope with the new challenges associated with RAN slicing management.Peer ReviewedPostprint (author's final draft
    • …
    corecore