6,430 research outputs found

    Towards Deep Semantic Analysis Of Hashtags

    Full text link
    Hashtags are semantico-syntactic constructs used across various social networking and microblogging platforms to enable users to start a topic specific discussion or classify a post into a desired category. Segmenting and linking the entities present within the hashtags could therefore help in better understanding and extraction of information shared across the social media. However, due to lack of space delimiters in the hashtags (e.g #nsavssnowden), the segmentation of hashtags into constituent entities ("NSA" and "Edward Snowden" in this case) is not a trivial task. Most of the current state-of-the-art social media analytics systems like Sentiment Analysis and Entity Linking tend to either ignore hashtags, or treat them as a single word. In this paper, we present a context aware approach to segment and link entities in the hashtags to a knowledge base (KB) entry, based on the context within the tweet. Our approach segments and links the entities in hashtags such that the coherence between hashtag semantics and the tweet is maximized. To the best of our knowledge, no existing study addresses the issue of linking entities in hashtags for extracting semantic information. We evaluate our method on two different datasets, and demonstrate the effectiveness of our technique in improving the overall entity linking in tweets via additional semantic information provided by segmenting and linking entities in a hashtag.Comment: To Appear in 37th European Conference on Information Retrieva

    Automatic Detection and Categorization of Election-Related Tweets

    Get PDF
    With the rise in popularity of public social media and micro-blogging services, most notably Twitter, the people have found a venue to hear and be heard by their peers without an intermediary. As a consequence, and aided by the public nature of Twitter, political scientists now potentially have the means to analyse and understand the narratives that organically form, spread and decline among the public in a political campaign. However, the volume and diversity of the conversation on Twitter, combined with its noisy and idiosyncratic nature, make this a hard task. Thus, advanced data mining and language processing techniques are required to process and analyse the data. In this paper, we present and evaluate a technical framework, based on recent advances in deep neural networks, for identifying and analysing election-related conversation on Twitter on a continuous, longitudinal basis. Our models can detect election-related tweets with an F-score of 0.92 and can categorize these tweets into 22 topics with an F-score of 0.90.Comment: ICWSM'16, May 17-20, 2016, Cologne, Germany. In Proceedings of the 10th AAAI Conference on Weblogs and Social Media (ICWSM 2016). Cologne, German

    Learning Domain-Specific Word Embeddings from Sparse Cybersecurity Texts

    Full text link
    Word embedding is a Natural Language Processing (NLP) technique that automatically maps words from a vocabulary to vectors of real numbers in an embedding space. It has been widely used in recent years to boost the performance of a vari-ety of NLP tasks such as Named Entity Recognition, Syntac-tic Parsing and Sentiment Analysis. Classic word embedding methods such as Word2Vec and GloVe work well when they are given a large text corpus. When the input texts are sparse as in many specialized domains (e.g., cybersecurity), these methods often fail to produce high-quality vectors. In this pa-per, we describe a novel method to train domain-specificword embeddings from sparse texts. In addition to domain texts, our method also leverages diverse types of domain knowledge such as domain vocabulary and semantic relations. Specifi-cally, we first propose a general framework to encode diverse types of domain knowledge as text annotations. Then we de-velop a novel Word Annotation Embedding (WAE) algorithm to incorporate diverse types of text annotations in word em-bedding. We have evaluated our method on two cybersecurity text corpora: a malware description corpus and a Common Vulnerability and Exposure (CVE) corpus. Our evaluation re-sults have demonstrated the effectiveness of our method in learning domain-specific word embeddings
    • …
    corecore