725 research outputs found

    Device-to-Device Communications in the Millimeter Wave Band: A Novel Distributed Mechanism

    Full text link
    In spite of its potential advantages, the large-scale implementation of the device-to-device (D2D) communications has yet to be realized, mainly due to severe interference and lack of enough bandwidth in the microwave (μ\muW) band. Recently, exploiting the millimeter wave (mmW) band for D2D communications has attracted considerable attention as a potential solution to these challenges. However, its severe sensitivity to blockage along with its directional nature make the utilization of the mmW band a challenging task as it requires line-of-sight (LOS) link detection and careful beam alignment between the D2D transceivers. In this paper, we propose a novel distributed mechanism which enables the D2D devices to discover unblocked LOS links for the mmW band communication. Moreover, as such LOS links are not always available, the proposed mechanism allows the D2D devices to switch to the μ\muW band if necessary. In addition, the proposed mechanism detects the direction of the LOS links to perform the beam alignment. We have used tools from stochastic geometry to evaluate the performance of the proposed mechanism in terms of the signal-to-interference-plus-noise ratio (SINR) coverage probability. The performance of the proposed algorithm is then compared to the one of the single band (i.e., μ\muW/mmW) communication. The simulation results show that the proposed mechanism considerably outperforms the single band communication.Comment: 6 Pages, 6 Figures, Accepted for presentation in Wireless Telecommunication Symposium (WTS'18

    Computationally Intelligent Techniques for Resource Management in MmWave Small Cell Networks

    Get PDF
    Ultra densification in HetNets and the advent of mmWave technology for 5G networks have led researchers to redesign the existing resource management techniques. A salient feature of this activity is to accentuate the importance of CI resource allocation schemes offering less complexity and overhead. This article overviews the existing literature on resource management in mmWave-based Het- Nets with a special emphasis on CI techniques and further proposes frameworks that ensure quality of service requirements for all network entities. More specifically, HetNets with mmWave-based small cells pose different challenges compared to an all-microwave- based system. Similarly, various modes of small cell access policies and operations of base stations in dual mode, that is, operating both mmWave and microwave links simultaneously, offer unique challenges to resource allocation. Furthermore, the use of multi-slope path loss models becomes inevitable for analysis due to irregular cell patterns and blocking characteristics of mmWave communications. This article amalgamates the unique challenges posed because of the aforementioned recent developments and proposes various CI-based techniques, including game theory and optimization routines, to perform efficient resource management

    Integrated Access and Backhaul for 5G and Beyond (6G)

    Get PDF
    Enabling network densification to support coverage-limited millimeter wave (mmWave) frequencies is one of the main requirements for 5G and beyond. It is challenging to connect a high number of base stations (BSs) to the core network via a transport network. Although fiber provides high-rate reliable backhaul links, it requires a noteworthy investment for trenching and installation, and could also take a considerable deployment time. Wireless backhaul, on the other hand, enables fast installation and flexibility, at the cost of data rate and sensitivity to environmental effects. For these reasons, fiber and wireless backhaul have been the dominant backhaul technologies for decades. Integrated access and backhaul (IAB), where along with celluar access services a part of the spectrum available is used to backhaul, is a promising wireless solution for backhauling in 5G and beyond. To this end, in this thesis we evaluate, analyze and optimize IAB networks from various perspectives. Specifically, we analyze IAB networks and develop effective algorithms to improve service coverage probability. In contrast to fiber-connected setups, an IAB network may be affected by, e.g., blockage, tree foliage, and rain loss. Thus, a variety of aspects such as the effects of tree foliage, rain loss, and blocking are evaluated and the network performance when part of the network being non-IAB backhauled is analysed. Furthermore, we evaluate the effect of deployment optimization on the performance of IAB networks.First, in Paper A, we introduce and analyze IAB as an enabler for network densification. Then, we study the IAB network from different aspects of mmWave-based communications: We study the network performance for both urban and rural areas considering the impacts of blockage, tree foliage, and rain. Furthermore, performance comparisons are made between IAB and networks of which all or part of small BSs are fiber-connected. Following the analysis, it is observed that IAB may be a good backhauling solution with high flexibility and low time-to-market. The second part of the thesis focuses on improving the service coverage probability by carrying out topology optimization in IAB networks focusing on mmWave communication for different parameters, such as blockage, tree foliage, and antenna gain. In Paper B, we study topology optimization and routing in IAB networks in different perspectives. Thereby, we design efficient Genetic algorithm (GA)-based methods for IAB node distribution and non-IAB backhaul link placement. Furthermore, we study the effect of routing in the cases with temporal blockages. Finally, we briefly study the recent standardization developments, i.e., 3GPP Rel-16 as well as the\ua0Rel-17 discussions on routing. As the results show, with a proper planning on network deployment, IAB is an attractive solution to densify the networks for 5G and beyond. Finally, we focus on improving the performance of IAB networks with constrained deployment optimization. In Paper C, we consider various IAB network models while presenting different algorithms for constrained deployment optimization. Here, the constraints are coming from either inter-IAB distance limitations or geographical restrictions. As we show, proper network planning can considerably improve service coverage probability of IAB networks with deployment constraints

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC
    corecore