1,455 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    An Intelligent Edge-Centric Queries Allocation Scheme based on Ensemble Models

    Get PDF
    The combination of Internet of Things (IoT) and Edge Computing (EC) can assist in the delivery of novel applications that will facilitate end users activities. Data collected by numerous devices present in the IoT infrastructure can be hosted into a set of EC nodes becoming the subject of processing tasks for the provision of analytics. Analytics are derived as the result of various queries defined by end users or applications. Such queries can be executed in the available EC nodes to limit the latency in the provision of responses. In this paper, we propose a meta-ensemble learning scheme that supports the decision making for the allocation of queries to the appropriate EC nodes. Our learning model decides over queries' and nodes' characteristics. We provide the description of a matching process between queries and nodes after concluding the contextual information for each envisioned characteristic adopted in our meta-ensemble scheme. We rely on widely known ensemble models, combine them and offer an additional processing layer to increase the performance. The aim is to result a subset of EC nodes that will host each incoming query. Apart from the description of the proposed model, we report on its evaluation and the corresponding results. Through a large set of experiments and a numerical analysis, we aim at revealing the pros and cons of the proposed scheme
    • …
    corecore