224 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control

    Get PDF
    This paper presents two dynamic and distributed clustering algorithms for Wireless Sensor Networks (WSNs). Clustering approaches are used in WSNs to improve the network lifetime and scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head (CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH node positions, the algorithm is proved to converge to a specific partition of the mission area, the generalised Voronoi tessellation, in which the loads of the CH nodes are balanced. Conversely, if the CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load-balancing objective: a reinforcement learning approach is used to dynamically vary the mission space partition by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the approaches

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs

    Full text link
    [EN] The range of applications of Wireless Sensor Networks (WSNs) is increasing continuously despite of their serious constraints of the sensor nodes¿ resources such as storage, processing capacity, communication range and energy. The main issues in WSN are the energy consumption and the delay in relaying data to the Sink node. This becomes extremely important when deploying a big number of nodes, like the case of industry pollution monitoring. We propose an artificial neural network based energy-efficient and robust routing scheme for WSNs called ELDC. In this technique, the network is trained on huge data set containing almost all scenarios to make the network more reliable and adaptive to the environment. Additionally, it uses group based methodology to increase the life-span of the overall network, where groups may have different sizes. An artificial neural network provides an efficient threshold values for the selection of a group's CN and a cluster head based on back propagation technique and allows intelligent, efficient, and robust group organization. Thus, our proposed technique is highly energy-efficient capable to increase sensor nodes¿ lifetime. Simulation results show that it outperforms LEACH protocol by 42 percent, and other state-of-the-art protocols by more than 30 percent.Mehmood, A.; Lv, Z.; Lloret, J.; Umar, MM. (2020). ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs. IEEE Transactions on Emerging Topics in Computing. IEEE TETC. 8(1):106-114. https://doi.org/10.1109/TETC.2017.26718471061148

    Bio-inspired ant colony optimization based clustering algorithm with mobile sinks for applications in consumer home automation networks

    Get PDF
    With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks

    Spread Spectrum based QoS aware Energy Efficient Clustering Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are composed of small, resource-constrained sensor nodes that form self-organizing, infrastructure-less, and ad-hoc networks. Many energy-efficient protocols have been developed in the network layer to extend the lifetime and scalability of these networks, but they often do not consider the Quality of Service (QoS) requirements of the data flow, such as delay, data rate, reliability, and throughput. In clustering, the probabilistic and randomized approach for cluster head selection can lead to varying numbers of cluster heads in different rounds of data gathering. This paper presents a new algorithm called "Spread Spectrum based QoS aware Energy Efficient Clustering for Wireless sensor Networks" that uses spread spectrum to limit the formation of clusters and optimize the number of cluster heads in WSNs, improving energy efficiency and QoS for diverse data flows. Simulation results show that the proposed algorithm outperforms classical algorithms in terms of energy efficiency and QoS

    Mitigating Hotspot Problem Using Chaotic Salp Swarm Algorithm for Energy Efficient IoT Assisted Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSN) and Internet of Things (IoT) continued to be pro-active study due to their far reaching applications and also a crucial technology for ubiquitous living. In WSN, energy awareness becomes a significant design problem. Clustering can be defined as a renowned energy-efficient method and renders a lot of benefits like energy competence, less delay, scalability, and lifetime; but it resulted in hot spot problems. To sort out this problem a method called unequal clustering is designed. In unequal clustering, the cluster size differs with the Base Station (BS) distance. In this study, a new Chaotic Salp Swarm Algorithm Based Unequal Clustering Approach (CSSA-UCA) methodology to resolve hot spot issues in IoT-assisted WSN is proposed. The major objective of the CSSA-UCA methodology lies in the effectual identification of CHs and unequal cluster sizes. To accomplish this, the CSSA-UCA technique initially derives the CSSA by the incorporation of chaotic notions into the conventional SSA. At the same time, a fitness function incorporating multiple input parameters was considered for unequal cluster construction. A wide range of experimental result analyses is performed to exhibit the supremacy of the CSSA-UCA technique. The experimental results stated that the CSSA-UCA technique proficiently balances energy accretion and improves the network lifetime

    Energy aware performance evaluation of WSNs

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. Energy-efficient solutions are required for each aspect of WSN design to deliver the potential advantages of the WSN phenomenon, hence in both existing and future solutions for WSNs, energy efficiency is a grand challenge. The main contribution of this thesis is to present an approach considering the collaborative nature of WSNs and its correlation characteristics, providing a tool which considers issues from physical to application layer together as entities to enable the framework which facilitates the performance evaluation of WSNs. The simulation approach considered provides a clear separation of concerns amongst software architecture of the applications, the hardware configuration and the WSN deployment unlike the existing tools for evaluation. The reuse of models across projects and organizations is also promoted while realistic WSN lifetime estimations and performance evaluations are possible in attempts of improving performance and maximizing the lifetime of the network. In this study, simulations are carried out with careful assumptions for various layers taking into account the real time characteristics of WSN. The sensitivity of WSN systems are mainly due to their fragile nature when energy consumption is considered. The case studies presented demonstrate the importance of various parameters considered in this study. Simulation-based studies are presented, taking into account the realistic settings from each layer of the protocol stack. Physical environment is considered as well. The performance of the layered protocol stack in realistic settings reveals several important interactions between different layers. These interactions are especially important for the design of WSNs in terms of maximizing the lifetime of the network
    corecore