451 research outputs found

    Predicting Sparse Clients' Actions with CPOPT-Net in the Banking Environment

    Get PDF
    The digital revolution of the banking system with evolving European regulations have pushed the major banking actors to innovate by a newly use of their clients' digital information. Given highly sparse client activities, we propose CPOPT-Net, an algorithm that combines the CP canonical tensor decomposition, a multidimensional matrix decomposition that factorizes a tensor as the sum of rank-one tensors, and neural networks. CPOPT-Net removes efficiently sparse information with a gradient-based resolution while relying on neural networks for time series predictions. Our experiments show that CPOPT-Net is capable to perform accurate predictions of the clients' actions in the context of personalized recommendation. CPOPT-Net is the first algorithm to use non-linear conjugate gradient tensor resolution with neural networks to propose predictions of financial activities on a public data set

    Learning from Multi-View Multi-Way Data via Structural Factorization Machines

    Full text link
    Real-world relations among entities can often be observed and determined by different perspectives/views. For example, the decision made by a user on whether to adopt an item relies on multiple aspects such as the contextual information of the decision, the item's attributes, the user's profile and the reviews given by other users. Different views may exhibit multi-way interactions among entities and provide complementary information. In this paper, we introduce a multi-tensor-based approach that can preserve the underlying structure of multi-view data in a generic predictive model. Specifically, we propose structural factorization machines (SFMs) that learn the common latent spaces shared by multi-view tensors and automatically adjust the importance of each view in the predictive model. Furthermore, the complexity of SFMs is linear in the number of parameters, which make SFMs suitable to large-scale problems. Extensive experiments on real-world datasets demonstrate that the proposed SFMs outperform several state-of-the-art methods in terms of prediction accuracy and computational cost.Comment: 10 page

    Cross domain recommender systems using matrix and tensor factorization

    Get PDF
    Today, the amount and importance of available data on the internet are growing exponentially. These digital data has become a primary source of information and the people’s life bonded to them tightly. The data comes in diverse shapes and from various resources and users utilize them in almost all their personal or social activities. However, selecting a desirable option from the huge list of available options can be really frustrating and time-consuming. Recommender systems aim to ease this process by finding the proper items which are more likely to be interested by users. Undoubtedly, there is not even one social media or online service which can continue its’ work properly without using recommender systems. On the other hand, almost all available recommendation techniques suffer from some common issues: the data sparsity, the cold-start, and the new-user problems. This thesis tackles the mentioned problems using different methods. While, most of the recommender methods rely on using single domain information, in this thesis, the main focus is on using multi-domain information to create cross-domain recommender systems. A cross-domain recommender system is not only able to handle the cold-start and new-user situations much better, but it also helps to incorporate different features exposed in diverse domains together and capture a better understanding of the users’ preferences which means producing more accurate recommendations. In this thesis, a pre-clustering stage is proposed to reduce the data sparsity as well. Various cross-domain knowledge-based recommender systems are suggested to recommend items in two popular social media, the Twitter and LinkedIn, by using different information available in both domains. The state of art techniques in this field, namely matrix factorization and tensor decomposition, are implemented to develop cross-domain recommender systems. The presented recommender systems based on the coupled nonnegative matrix factorization and PARAFAC-style tensor decomposition are evaluated using real-world datasets and it is shown that they superior to the baseline matrix factorization collaborative filtering. In addition, network analysis is performed on the extracted data from Twitter and LinkedIn

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Contextual Attention Recurrent Architecture for Context-aware Venue Recommendation

    Get PDF
    Venue recommendation systems aim to effectively rank a list of interesting venues users should visit based on their historical feedback (e.g. checkins). Such systems are increasingly deployed by Location-based Social Networks (LBSNs) such as Foursquare and Yelp to enhance their usefulness to users. Recently, various RNN architectures have been proposed to incorporate contextual information associated with the users' sequence of checkins (e.g. time of the day, location of venues) to effectively capture the users' dynamic preferences. However, these architectures assume that different types of contexts have an identical impact on the users' preferences, which may not hold in practice. For example, an ordinary context such as the time of the day reflects the user's current contextual preferences, whereas a transition context - such as a time interval from their last visited venue - indicates a transition effect from past behaviour to future behaviour. To address these challenges, we propose a novel Contextual Attention Recurrent Architecture (CARA) that leverages both sequences of feedback and contextual information associated with the sequences to capture the users' dynamic preferences. Our proposed recurrent architecture consists of two types of gating mechanisms, namely 1) a contextual attention gate that controls the influence of the ordinary context on the users' contextual preferences and 2) a time- and geo-based gate that controls the influence of the hidden state from the previous checkin based on the transition context. Thorough experiments on three large checkin and rating datasets from commercial LBSNs demonstrate the effectiveness of our proposed CARA architecture by significantly outperforming many state-of-the-art RNN architectures and factorisation approaches
    • …
    corecore