87,321 research outputs found

    The OCarePlatform : a context-aware system to support independent living

    Get PDF
    Background: Currently, healthcare services, such as institutional care facilities, are burdened with an increasing number of elderly people and individuals with chronic illnesses and a decreasing number of competent caregivers. Objectives: To relieve the burden on healthcare services, independent living at home could be facilitated, by offering individuals and their (in)formal caregivers support in their daily care and needs. With the rise of pervasive healthcare, new information technology solutions can assist elderly people ("residents") and their caregivers to allow residents to live independently for as long as possible. Methods: To this end, the OCarePlatform system was designed. This semantic, data-driven and cloud based back-end system facilitates independent living by offering information and knowledge-based services to the resident and his/her (in)formal caregivers. Data and context information are gathered to realize context-aware and personalized services and to support residents in meeting their daily needs. This body of data, originating from heterogeneous data and information sources, is sent to personalized services, where is fused, thus creating an overview of the resident's current situation. Results: The architecture of the OCarePlatform is proposed, which is based on a service-oriented approach, together with its different components and their interactions. The implementation details are presented, together with a running example. A scalability and performance study of the OCarePlatform was performed. The results indicate that the OCarePlatform is able to support a realistic working environment and respond to a trigger in less than 5 seconds. The system is highly dependent on the allocated memory. Conclusion: The data-driven character of the OCarePlatform facilitates easy plug-in of new functionality, enabling the design of personalized, context-aware services. The OCarePlatform leads to better support for elderly people and individuals with chronic illnesses, who live independently. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    GSO: Designing a Well-Founded Service Ontology to Support Dynamic Service Discovery and Composition

    Get PDF
    A pragmatic and straightforward approach to semantic service discovery is to match inputs and outputs of user requests with the input and output requirements of registered service descriptions. This approach can be extended by using pre-conditions, effects and semantic annotations (meta-data) in an attempt to increase discovery accuracy. While on one hand these additions help improve discovery accuracy, on the other hand complexity is added as service users need to add more information elements to their service requests. In this paper we present an approach that aims at facilitating the representation of service requests by service users, without loss of accuracy. We introduce a Goal-Based Service Framework (GSF) that uses the concept of goal as an abstraction to represent service requests. This paper presents the core concepts and relations of the Goal-Based Service Ontology (GSO), which is a fundamental component of the GSF, and discusses how the framework supports semantic service discovery and composition. GSO provides a set of primitives and relations between goals, tasks and services. These primitives allow a user to represent its goals, and a supporting platform to discover or compose services that fulfil them

    A Novel Ontology and Machine Learning Driven Hybrid Clinical Decision Support Framework for Cardiovascular Preventative Care

    Get PDF
    Clinical risk assessment of chronic illnesses is a challenging and complex task which requires the utilisation of standardised clinical practice guidelines and documentation procedures in order to ensure consistent and efficient patient care. Conventional cardiovascular decision support systems have significant limitations, which include the inflexibility to deal with complex clinical processes, hard-wired rigid architectures based on branching logic and the inability to deal with legacy patient data without significant software engineering work. In light of these challenges, we are proposing a novel ontology and machine learning-driven hybrid clinical decision support framework for cardiovascular preventative care. An ontology-inspired approach provides a foundation for information collection, knowledge acquisition and decision support capabilities and aims to develop context sensitive decision support solutions based on ontology engineering principles. The proposed framework incorporates an ontology-driven clinical risk assessment and recommendation system (ODCRARS) and a Machine Learning Driven Prognostic System (MLDPS), integrated as a complete system to provide a cardiovascular preventative care solution. The proposed clinical decision support framework has been developed under the close supervision of clinical domain experts from both UK and US hospitals and is capable of handling multiple cardiovascular diseases. The proposed framework comprises of two novel key components: (1) ODCRARS (2) MLDPS. The ODCRARS is developed under the close supervision of consultant cardiologists Professor Calum MacRae from Harvard Medical School and Professor Stephen Leslie from Raigmore Hospital in Inverness, UK. The ODCRARS comprises of various components, which include: (a) Ontology-driven intelligent context-aware information collection for conducting patient interviews which are driven through a novel clinical questionnaire ontology. (b) A patient semantic profile, is generated using patient medical records which are collated during patient interviews (conducted through an ontology-driven context aware adaptive information collection component). The semantic transformation of patients’ medical data is carried out through a novel patient semantic profile ontology in order to give patient data an intrinsic meaning and alleviate interoperability issues with third party healthcare systems. (c) Ontology driven clinical decision support comprises of a recommendation ontology and a NICE/Expert driven clinical rules engine. The recommendation ontology is developed using clinical rules provided by the consultant cardiologist from the US hospital. The recommendation ontology utilises the patient semantic profile for lab tests and medication recommendation. A clinical rules engine is developed to implement a cardiac risk assessment mechanism for various cardiovascular conditions. The clinical rules engine is also utilised to control the patient flow within the integrated cardiovascular preventative care solution. The machine learning-driven prognostic system is developed in an iterative manner using state of the art feature selection and machine learning techniques. A prognostic model development process is exploited for the development of MLDPS based on clinical case studies in the cardiovascular domain. An additional clinical case study in the breast cancer domain is also carried out for the development and validation purposes. The prognostic model development process is general enough to handle a variety of healthcare datasets which will enable researchers to develop cost effective and evidence based clinical decision support systems. The proposed clinical decision support framework also provides a learning mechanism based on machine learning techniques. Learning mechanism is provided through exchange of patient data amongst the MLDPS and the ODCRARS. The machine learning-driven prognostic system is validated using Raigmore Hospital's RACPC, heart disease and breast cancer clinical case studies

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    Ontology-based collaborative framework for disaster recovery scenarios

    Full text link
    This paper aims at designing of adaptive framework for supporting collaborative work of different actors in public safety and disaster recovery missions. In such scenarios, firemen and robots interact to each other to reach a common goal; firemen team is equipped with smart devices and robots team is supplied with communication technologies, and should carry on specific tasks. Here, reliable connection is mandatory to ensure the interaction between actors. But wireless access network and communication resources are vulnerable in the event of a sudden unexpected change in the environment. Also, the continuous change in the mission requirements such as inclusion/exclusion of new actor, changing the actor's priority and the limitations of smart devices need to be monitored. To perform dynamically in such case, the presented framework is based on a generic multi-level modeling approach that ensures adaptation handled by semantic modeling. Automated self-configuration is driven by rule-based reconfiguration policies through ontology

    Personalizable Service Discovery in Pervasive Systems

    Get PDF
    Today, telecom providers are facing changing challenges. To stay ahead in the competition and provide market leading offerings, carriers need to enable a global ecosystem of third party independent application developers to deliver converged services. This is the aim of leveraging a open standardsbased service delivery platform. To identify and to cope with those challenges is the main target of the EU funded project IST DAIDALOS II. And a central point to satisfy the changing user needs is the provision of a well working, user friendly and personalized service discovery. This paper describes our work in the project on a middleware in a framework for pervasive service usage. We have designed an architecture for it, that enables full transparency to the user, grants high compatibility and extendability by a modular and pluggable conception and allows for interoperability with most known service discovery protocols. Our Multi-Protocol Service Discovery and the Four Phases Service Filtering concept enabling personalization should allow for the best possible results in service discovery

    Exploiting the user interaction context for automatic task detection

    Get PDF
    Detecting the task a user is performing on her computer desktop is important for providing her with contextualized and personalized support. Some recent approaches propose to perform automatic user task detection by means of classifiers using captured user context data. In this paper we improve on that by using an ontology-based user interaction context model that can be automatically populated by (i) capturing simple user interaction events on the computer desktop and (ii) applying rule-based and information extraction mechanisms. We present evaluation results from a large user study we have carried out in a knowledge-intensive business environment, showing that our ontology-based approach provides new contextual features yielding good task detection performance. We also argue that good results can be achieved by training task classifiers `online' on user context data gathered in laboratory settings. Finally, we isolate a combination of contextual features that present a significantly better discriminative power than classical ones
    • 

    corecore