8,668 research outputs found

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Middleware for Mobile Sensing Applications in Urban Environments

    Get PDF
    Sensor networks represent an attractive tool to observe the physical world. Networks of tiny sensors can be used to detect a fire in a forest, to monitor the level of pollution in a river, or to check on the structural integrity of a bridge. Application-specific deployments of static-sensor networks have been widely investigated. Commonly, these networks involve a centralized data-collection point and no sharing of data outside the organization that owns it. Although this approach can accommodate many application scenarios, it significantly deviates from the pervasive computing vision of ubiquitous sensing where user applications seamlessly access anytime, anywhere data produced by sensors embedded in the surroundings. With the ubiquity and ever-increasing capabilities of mobile devices, urban environments can help give substance to the ubiquitous sensing vision through Urbanets, spontaneously created urban networks. Urbanets consist of mobile multi-sensor devices, such as smart phones and vehicular systems, public sensor networks deployed by municipalities, and individual sensors incorporated in buildings, roads, or daily artifacts. My thesis is that "multi-sensor mobile devices can be successfully programmed to become the underpinning elements of an open, infrastructure-less, distributed sensing platform that can bring sensor data out of their traditional close-loop networks into everyday urban applications". Urbanets can support a variety of services ranging from emergency and surveillance to tourist guidance and entertainment. For instance, cars can be used to provide traffic information services to alert drivers to upcoming traffic jams, and phones to provide shopping recommender services to inform users of special offers at the mall. Urbanets cannot be programmed using traditional distributed computing models, which assume underlying networks with functionally homogeneous nodes, stable configurations, and known delays. Conversely, Urbanets have functionally heterogeneous nodes, volatile configurations, and unknown delays. Instead, solutions developed for sensor networks and mobile ad hoc networks can be leveraged to provide novel architectures that address Urbanet-specific requirements, while providing useful abstractions that hide the network complexity from the programmer. This dissertation presents two middleware architectures that can support mobile sensing applications in Urbanets. Contory offers a declarative programming model that views Urbanets as a distributed sensor database and exposes an SQL-like interface to developers. Context-aware Migratory Services provides a client-server paradigm, where services are capable of migrating to different nodes in the network in order to maintain a continuous and semantically correct interaction with clients. Compared to previous approaches to supporting mobile sensing urban applications, our architectures are entirely distributed and do not assume constant availability of Internet connectivity. In addition, they allow on-demand collection of sensor data with the accuracy and at the frequency required by every application. These architectures have been implemented in Java and tested on smart phones. They have proved successful in supporting several prototype applications and experimental results obtained in ad hoc networks of phones have demonstrated their feasibility with reasonable performance in terms of latency, memory, and energy consumption.Deploying a network of sensors to monitor an environment is a common practice. For example, cameras in museums, supermarkets, or buildings are installed for surveillance purposes. However, while a decade ago, most deployed sensor networks involved a limited number of sensors, wired to a central processing unit, nowadays, the focus is on wireless, distributed, sensing nodes. Sensor technology has greatly advanced in terms of size, power consumption, processing capabilities, and low cost, thus fostering deployments of self-organizing wireless sensor networks over large geographical areas. For example, sensor networks have been used to detect a fire in a forest, to monitor the level of pollution in a river, or to check on the structural integrity of a bridge. Yet, sensor networks are usually perceived as ``something'' remote in the forest or on the battlefield, and regular users do not yet benefit from them. With the ubiquity and ever-increasing capabilities of mobile devices, such as smart phones and computers embedded in cars, urban environments offer the elements necessary to create people-centric mobile sensor networks and support a large variety of so-called sensing applications ranging from emergency and surveillance to tourist guidance and entertainment. For example, near-ubiquitous smart phones with audio and video sensing capabilities and more sensors in the near future can be used to provide shopping recommender services to inform users of special offers at the mall. Sensor-equipped cars can be used to provide traffic information services to alert drivers to upcoming traffic jams. However, urban mobile sensor networks are challenging programming environments due to the dynamism of mobile devices, the resource constraints of battery-powered devices, the software and hardware heterogeneity, and the large number of concurrent applications that they need to support. These requirements hinder the direct adoption of traditional distributed computing platforms developed for static resource-rich networks. This dissertation presents two architectures that can support the development of mobile sensing applications in urban environments. Contory offers a declarative programming model that views the urban network as a distributed sensor database. Context-aware Migratory Services provides a client-server paradigm, where services are capable of migrating to different nodes in the network in order to maintain a continuous interaction with clients. Compared to previous approaches to supporting mobile sensing urban applications, our architectures are entirely distributed and do not assume constant availability of Internet connectivity. These architectures have been implemented in Java and tested on smart phones. They have proved successful in supporting several prototype applications and experimental results obtained in networks of phones have demonstrated their feasibility with reasonable performance in terms of latency, memory, and energy consumption. The proposed architectures offer many opportunities to flexibly and quickly establish customized services that can greatly enhance the users' urban experience. Further steps to fully accomplish people-centric mobile sensing applications will have to address more technical issues as well as social and legal concerns

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Service Migration in Dynamic and Resource-Constrained Networks

    Get PDF

    CRFM Consultancy Report on Review of Existing Policy, Legal and Institutional Arrangements for Governance and Management of Flyingfish Fisheries in the Caribbean Large Marine Ecosystem

    Get PDF
    Many of the marine resources in the Caribbean are considered to be fully or overexploited. A Transboundary Diagnostic Analysis identified three priority transboundary problems that affect the CLME: unsustainable exploitation of fish and other living resources, the degradation and modification of natural habitats, pollution and contamination. The fourwing flyingfish fishery is the single most important small pelagic fishery in the southern Lesser Antilles. It is a shared resource, which has been traditionally exploited by seven different States, i.e. Barbados, Dominica, Grenada, Martinique, Saint Lucia, Saint Vincent and the Grenadines and Trinidad and Tobago. With expanding fleet capacity and limited cooperation among the States exploiting the flyingfish, there is concern that the resource may become overfished. While the flyingfish fishery is a directed fishery, it is at the same time part of a multi-species, multi-gear fishery, which also targets regional large pelagic species.This case study identifies and analyses the priority transboundary problems and issues. The policy, legal and institutional reforms needed to address such transboundary issues and achieve long-term conservation and sustainable use of the resources are also identified. A major and necessary component of the case study is an evaluation of the existing policy cycles and linkages among the countries and institutions involved with the flyingfish fishery

    Cooperative & cost-effective network selection: a novel approach to support location-dependent & context-aware service migration in VANETs

    Get PDF
    Vehicular networking has gained considerable interest within the research community and industry. This class of mobile ad hoc network expects to play a vital role in the design and deployment of intelligent transportation systems. The research community expects to launch several innovative applications over Vehicular Ad hoc Networks (VANETs). The automotive industry is supporting the notion of pervasive connectivity by agreeing to equip vehicles with devices required for vehicular ad hoc networking. Equipped with these devices, mobile nodes in VANETs are capable of hosting many types of applications as services for other nodes in the network. These applications or services are classified as safety-critical (failure or unavailability of which may lead to a life threat) and non-safety-critical (failure of which do not lead to a life threat). Safety-critical and non-safety-critical applications need to be supported concurrently within VANETs. This research covers non-safety-critical applications since the research community has overlooked this class of applications. More specifically, this research focuses on VANETs services that are location-dependent. Due to high speed mobility, VANETs are prone to intermittent network connectivity. It is therefore envisioned that location-dependence and intermittent network connectivity are the two major challenges for VANETs to host and operate non-safety-critical VANETs services. The challenges are further exacerbated when the area where the services are to be deployed is unplanned i.e. lacks communication infrastructure and planning. Unplanned areas show irregular vehicular traffic on the road. Either network traffic flows produced by irregular vehicular traffic may lead to VANETs communication channel congestion, or it may leave the communication channel under-utilized. In both cases, this leads to communication bottlenecks within VANETs. This dissertation investigates the shortcomings of location-dependence, intermittent network connectivity and irregular network traffic flows and addresses them by exploiting location-dependent service migration over an integrated network in an efficient and cost-effective manner

    Out of the Frying Pan... From Messy Migration Governance to the Production of Statelessness in Mexico

    Full text link
    From an anthropological perspective, this working paper explores the process through which, in recent years, a significant number of extra-continental migrants in Mexico have received stateless status, as well as the practical consequences of this status in their lives. Based in a policy of ambivalence within a messy global migration governance context, the Mexican government has been creating ad-hoc solutions, such as the issuance of stateless cards, whose implications - largely uncertain - may be counterproductive in the long term. Based on the results obtained from an ethnographic study with African migrants in transit through Mexico carried out between 2021 and 2022, this study highlights the practical implications of being considered stateless, as well as the uncertain consequences on the future migratory trajectories of these people. In doing so, it complements previous research, mostly of a legal and/or quantitative nature

    Compilation of Reports from the Conference on Trafficking of Human Beings and Migration: A human rights approach

    Get PDF
    This document is part of a digital collection provided by the Martin P. Catherwood Library, ILR School, Cornell University, pertaining to the effects of globalization on the workplace worldwide. Special emphasis is placed on labor rights, working conditions, labor market changes, and union organizing.ASI_2005_HT_Portugal_Compilation_of_Reports.pdf: 184 downloads, before Oct. 1, 2020
    • …
    corecore