9,357 research outputs found

    Query-Driven Sampling for Collective Entity Resolution

    Full text link
    Probabilistic databases play a preeminent role in the processing and management of uncertain data. Recently, many database research efforts have integrated probabilistic models into databases to support tasks such as information extraction and labeling. Many of these efforts are based on batch oriented inference which inhibits a realtime workflow. One important task is entity resolution (ER). ER is the process of determining records (mentions) in a database that correspond to the same real-world entity. Traditional pairwise ER methods can lead to inconsistencies and low accuracy due to localized decisions. Leading ER systems solve this problem by collectively resolving all records using a probabilistic graphical model and Markov chain Monte Carlo (MCMC) inference. However, for large datasets this is an extremely expensive process. One key observation is that, such exhaustive ER process incurs a huge up-front cost, which is wasteful in practice because most users are interested in only a small subset of entities. In this paper, we advocate pay-as-you-go entity resolution by developing a number of query-driven collective ER techniques. We introduce two classes of SQL queries that involve ER operators --- selection-driven ER and join-driven ER. We implement novel variations of the MCMC Metropolis Hastings algorithm to generate biased samples and selectivity-based scheduling algorithms to support the two classes of ER queries. Finally, we show that query-driven ER algorithms can converge and return results within minutes over a database populated with the extraction from a newswire dataset containing 71 million mentions

    SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases

    Get PDF
    The Internet has enabled the creation of a growing number of large-scale knowledge bases in a variety of domains containing complementary information. Tools for automatically aligning these knowledge bases would make it possible to unify many sources of structured knowledge and answer complex queries. However, the efficient alignment of large-scale knowledge bases still poses a considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a simple algorithm for aligning knowledge bases with millions of entities and facts. SiGMa is an iterative propagation algorithm which leverages both the structural information from the relationship graph as well as flexible similarity measures between entity properties in a greedy local search, thus making it scalable. Despite its greedy nature, our experiments indicate that SiGMa can efficiently match some of the world's largest knowledge bases with high precision. We provide additional experiments on benchmark datasets which demonstrate that SiGMa can outperform state-of-the-art approaches both in accuracy and efficiency.Comment: 10 pages + 2 pages appendix; 5 figures -- initial preprin

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    Towards Scalable Real-Time Entity Resolution using a Similarity-Aware Inverted Index Approach

    Get PDF
    Most research into entity resolution (also known as record linkage or data matching) has concentrated on the quality of the matching results. In this paper, we focus on matching time and scalability, with the aim to achieve large-scale real-time entity resolution. Traditional entity resolution techniques have as-sumed the matching of two static databases. In our networked and online world, however, it is becoming increasingly important for many organisations to be able to conduct entity resolution between a collection of often very large databases and a stream of query or update records. The matching should be done in (near) real-time, and be as automatic and accurate as possible, returning a ranked list of matched records for each given query record. This task therefore be-comes similar to querying large document collections, as done for example by Web search engines, however based on a different type of documents: structured database records that, for example, contain personal information, such as names and addresses. In this paper, we investigate inverted indexing techniques, as commonly used in Web search engines, and employ them for real-time entity resolution. We present two variations of the traditional inverted in-dex approach, aimed at facilitating fast approximate matching. We show encouraging initial results on large real-world data sets, with the inverted index ap-proaches being up-to one hundred times faster than the traditionally used standard blocking approach. However, this improved matching speed currently comes at a cost, in that matching quality for larger data sets can be lower compared to when tandard blocking is used, and thus more work is required

    Incremental Entity Resolution from Linked Documents

    Full text link
    In many government applications we often find that information about entities, such as persons, are available in disparate data sources such as passports, driving licences, bank accounts, and income tax records. Similar scenarios are commonplace in large enterprises having multiple customer, supplier, or partner databases. Each data source maintains different aspects of an entity, and resolving entities based on these attributes is a well-studied problem. However, in many cases documents in one source reference those in others; e.g., a person may provide his driving-licence number while applying for a passport, or vice-versa. These links define relationships between documents of the same entity (as opposed to inter-entity relationships, which are also often used for resolution). In this paper we describe an algorithm to cluster documents that are highly likely to belong to the same entity by exploiting inter-document references in addition to attribute similarity. Our technique uses a combination of iterative graph-traversal, locality-sensitive hashing, iterative match-merge, and graph-clustering to discover unique entities based on a document corpus. A unique feature of our technique is that new sets of documents can be added incrementally while having to re-resolve only a small subset of a previously resolved entity-document collection. We present performance and quality results on two data-sets: a real-world database of companies and a large synthetically generated `population' database. We also demonstrate benefit of using inter-document references for clustering in the form of enhanced recall of documents for resolution.Comment: 15 pages, 8 figures, patented wor

    End-to-End Entity Resolution for Big Data: A Survey

    Get PDF
    One of the most important tasks for improving data quality and the reliability of data analytics results is Entity Resolution (ER). ER aims to identify different descriptions that refer to the same real-world entity, and remains a challenging problem. While previous works have studied specific aspects of ER (and mostly in traditional settings), in this survey, we provide for the first time an end-to-end view of modern ER workflows, and of the novel aspects of entity indexing and matching methods in order to cope with more than one of the Big Data characteristics simultaneously. We present the basic concepts, processing steps and execution strategies that have been proposed by different communities, i.e., database, semantic Web and machine learning, in order to cope with the loose structuredness, extreme diversity, high speed and large scale of entity descriptions used by real-world applications. Finally, we provide a synthetic discussion of the existing approaches, and conclude with a detailed presentation of open research directions

    Distantly Labeling Data for Large Scale Cross-Document Coreference

    Full text link
    Cross-document coreference, the problem of resolving entity mentions across multi-document collections, is crucial to automated knowledge base construction and data mining tasks. However, the scarcity of large labeled data sets has hindered supervised machine learning research for this task. In this paper we develop and demonstrate an approach based on ``distantly-labeling'' a data set from which we can train a discriminative cross-document coreference model. In particular we build a dataset of more than a million people mentions extracted from 3.5 years of New York Times articles, leverage Wikipedia for distant labeling with a generative model (and measure the reliability of such labeling); then we train and evaluate a conditional random field coreference model that has factors on cross-document entities as well as mention-pairs. This coreference model obtains high accuracy in resolving mentions and entities that are not present in the training data, indicating applicability to non-Wikipedia data. Given the large amount of data, our work is also an exercise demonstrating the scalability of our approach.Comment: 16 pages, submitted to ECML 201
    • …
    corecore