34,623 research outputs found

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Run-time Support to Manage Architectural Variability Speci ed with CVL

    Get PDF
    The execution context in which pervasive systems or mobile computing run changes continuously. Hence, applications for these systems should be adapted at run-time according to the current context. In order to implement a context-aware dynamic reconfiguration service, most approaches usually require to model at design-time both the list of all possible configurations and the plans to switch among them. In this paper we present an alternative approach for the automatic run-time generation of application configurations and the reconfiguration plans. The generated configurations are optimal regarding di erent criteria, such as functionality or resource consumption (e.g. battery or memory). This is achieved by: (1) modelling architectural variability at design-time using Common Variability Language (CVL), and (2) using a genetic algorithm that finds at run-time nearly-optimal configurations using the information provided by the variability model. We also specify a case study and we use it to evaluate our approach, showing that it is efficient and suitable for devices with scarce resources.Campus de Excelencia Internacional Andalucia Tech y proyectos de investigaciĂłn TIN2008-01942, P09-TIC-5231 and INTER-TRUST FP7-317731

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    Policy Enforcement with Proactive Libraries

    Full text link
    Software libraries implement APIs that deliver reusable functionalities. To correctly use these functionalities, software applications must satisfy certain correctness policies, for instance policies about the order some API methods can be invoked and about the values that can be used for the parameters. If these policies are violated, applications may produce misbehaviors and failures at runtime. Although this problem is general, applications that incorrectly use API methods are more frequent in certain contexts. For instance, Android provides a rich and rapidly evolving set of APIs that might be used incorrectly by app developers who often implement and publish faulty apps in the marketplaces. To mitigate this problem, we introduce the novel notion of proactive library, which augments classic libraries with the capability of proactively detecting and healing misuses at run- time. Proactive libraries blend libraries with multiple proactive modules that collect data, check the correctness policies of the libraries, and heal executions as soon as the violation of a correctness policy is detected. The proactive modules can be activated or deactivated at runtime by the users and can be implemented without requiring any change to the original library and any knowledge about the applications that may use the library. We evaluated proactive libraries in the context of the Android ecosystem. Results show that proactive libraries can automati- cally overcome several problems related to bad resource usage at the cost of a small overhead.Comment: O. Riganelli, D. Micucci and L. Mariani, "Policy Enforcement with Proactive Libraries" 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Buenos Aires, Argentina, 2017, pp. 182-19
    • …
    corecore