575,331 research outputs found

    Modeling cloud resources using machine learning

    Get PDF
    Cloud computing is a new Internet infrastructure paradigm where management optimization has become a challenge to be solved, as all current management systems are human-driven or ad-hoc automatic systems that must be tuned manually by experts. Management of cloud resources require accurate information about all the elements involved (host machines, resources, offered services, and clients), and some of this information can only be obtained a posteriori. Here we present the cloud and part of its architecture as a new scenario where data mining and machine learning can be applied to discover information and improve its management thanks to modeling and prediction. As a novel case of study we show in this work the modeling of basic cloud resources using machine learning, predicting resource requirements from context information like amount of load and clients, and also predicting the quality of service from resource planning, in order to feed cloud schedulers. Further, this work is an important part of our ongoing research program, where accurate models and predictors are essential to optimize cloud management autonomic systems.Postprint (published version

    Managing contextual information in semantically-driven temporal information systems

    Get PDF
    Context-aware (CA) systems have demonstrated the provision of a robust solution for personalized information delivery in the current content-rich and dynamic information age we live in. They allow software agents to autonomously interact with users by modeling the user’s environment (e.g. profile, location, relevant public information etc.) as dynamically-evolving and interoperable contexts. There is a flurry of research activities in a wide spectrum at context-aware research areas such as managing the user’s profile, context acquisition from external environments, context storage, context representation and interpretation, context service delivery and matching of context attributes to users‘ queries etc. We propose SDCAS, a Semantic-Driven Context Aware System that facilitates public services recommendation to users at temporal location. This paper focuses on information management and service recommendation using semantic technologies, taking into account the challenges of relationship complexity in temporal and contextual information

    SBEAMS-Microarray: database software supporting genomic expression analyses for systems biology

    Get PDF
    BACKGROUND: The biological information in genomic expression data can be understood, and computationally extracted, in the context of systems of interacting molecules. The automation of this information extraction requires high throughput management and analysis of genomic expression data, and integration of these data with other data types. RESULTS: SBEAMS-Microarray, a module of the open-source Systems Biology Experiment Analysis Management System (SBEAMS), enables MIAME-compliant storage, management, analysis, and integration of high-throughput genomic expression data. It is interoperable with the Cytoscape network integration, visualization, analysis, and modeling software platform. CONCLUSION: SBEAMS-Microarray provides end-to-end support for genomic expression analyses for network-based systems biology research

    Managing Security Requirements: Towards Better Alignment Between Information Systems And Business

    Get PDF
    Information Systems are increasingly becoming essential to the success of business organizations. They play a central role in the success of almost all components of the organization such as business decision-making, business strategy formulation, business goal modeling, managing organizational resources, structure, managing organizational data etc. However, protecting information systems and organizational resources from security threats is a critical task in the management of the business, which alternately, negatively affects the alignment process between business and information systems. Managing information security within business organizations calls for a clear understanding of the viewpoint of business and the architecture of the system that is being used in the organization. This paper presents a requirements engineering based approach to modeling and maping the issue of information security at an early stage of the system’s development life cycle in the context of alignment between business and information systems

    Managing Process Variants in the Process Life Cycle

    Get PDF
    When designing process-aware information systems, often variants of the same process have to be specified. Each variant then constitutes an adjustment of a particular process to specific requirements building the process context. Current Business Process Management (BPM) tools do not adequately support the management of process variants. Usually, the variants have to be kept in separate process models. This leads to huge modeling and maintenance efforts. In particular, more fundamental process changes (e.g., changes of legal regulations) often require the adjustment of all process variants derived from the same process; i.e., the variants have to be adapted separately to meet the new requirements. This redundancy in modeling and adapting process variants is both time consuming and error-prone. This paper presents the Provop approach, which provides a more flexible solution for managing process variants in the process life cycle. In particular, process variants can be configured out of a basic process following an operational approach; i.e., a specific variant is derived from the basic process by applying a set of well-defined change operations to it. Provop provides full process life cycle support and allows for flexible process configuration resulting in a maintainable collection of process variants

    A Human-Centric Approach to Group-Based Context-Awareness

    Full text link
    The emerging need for qualitative approaches in context-aware information processing calls for proper modeling of context information and efficient handling of its inherent uncertainty resulted from human interpretation and usage. Many of the current approaches to context-awareness either lack a solid theoretical basis for modeling or ignore important requirements such as modularity, high-order uncertainty management and group-based context-awareness. Therefore, their real-world application and extendability remains limited. In this paper, we present f-Context as a service-based context-awareness framework, based on language-action perspective (LAP) theory for modeling. Then we identify some of the complex, informational parts of context which contain high-order uncertainties due to differences between members of the group in defining them. An agent-based perceptual computer architecture is proposed for implementing f-Context that uses computing with words (CWW) for handling uncertainty. The feasibility of f-Context is analyzed using a realistic scenario involving a group of mobile users. We believe that the proposed approach can open the door to future research on context-awareness by offering a theoretical foundation based on human communication, and a service-based layered architecture which exploits CWW for context-aware, group-based and platform-independent access to information systems

    Energy rating of a water pumping station using multivariate analysis

    Get PDF
    Among water management policies, the preservation and the saving of energy demand in water supply and treatment systems play key roles. When focusing on energy, the customary metric to determine the performance of water supply systems is linked to the definition of component-based energy indicators. This approach is unfit to account for interactions occurring among system elements or between the system and its environment. On the other hand, the development of information technology has led to the availability of increasing large amount of data, typically gathered from distributed sensor networks in so-called smart grids. In this context, data intensive methodologies address the possibility of using complex network modeling approaches, and advocate the issues related to the interpretation and analysis of large amount of data produced by smart sensor networks. In this perspective, the present work aims to use data intensive techniques in the energy analysis of a water management network. The purpose is to provide new metrics for the energy rating of the system and to be able to provide insights into the dynamics of its operations. The study applies neural network as a tool to predict energy demand, when using flowrate and vibration data as predictor variables
    corecore