30,536 research outputs found

    Discovering Boundaries for Mobile Awareness: An Analysis of Relevant Design Factors

    Get PDF
    Mobile awareness applications connect you with the activities of friends, colleagues, and communication partners. The development of awareness applications for mobile devices is a top priority for HCI researchers. In discovering boundaries for mobile awareness systems, it is important to consider how these devices will be used. Factors relevant to design include boundaries drawn by technical, functional, privacy and complexity issues. This paper presents a literature review and introduces a Mobile Awareness Conceptual Framework that defines relevant boundaries for mobile awareness applications. The Framework includes information awareness, people-centered awareness, and context awareness. The paper concludes with an application of the Framework to inform the design of mobile awareness systems

    Towards an holistic view of the energy and environmental impacts of domestic media and IT

    Get PDF
    To date, research in sustainable HCI has dealt with eco-feedback, usage and recycling of appliances within the home, and longevity of portable electronics such as mobile phones. However, there seems to be less awareness of the energy and greenhouse emissions impacts of domestic consumer electronics and information technology. Such awareness is needed to inform HCI sustainability researchers on how best to prioritise efforts around digital media and IT. Grounded in inventories, interview and plug energy data from 33 undergraduate student participants, our findings provide the context for assessing approaches to reducing the energy and carbon emissions of media and IT in the home. In the paper, we use the findings to discuss and inform more fruitful directions that sustainable HCI research might take, and we quantify how various strategies might have modified the energy and emissions impacts for our participants

    Direct combination: a new user interaction principle for mobile and ubiquitous HCI

    Get PDF
    Direct Combination (DC) is a recently introduced user interaction principle. The principle (previously applied to desktop computing) can greatly reduce the degree of search, time, and attention required to operate user interfaces. We argue that Direct Combination applies particularly aptly to mobile computing devices, given appropriate interaction techniques, examples of which are presented here. The reduction in search afforded to users can be applied to address several issues in mobile and ubiquitous user interaction including: limited feedback bandwidth; minimal attention situations; and the need for ad-hoc spontaneous interoperation and dynamic reconfiguration of multiple devices. When Direct Combination is extended and adapted to fit the demands of mobile and ubiquitous HCI, we refer to it as Ambient Combination (AC) . Direct Combination allows the user to exploit objects in the environment to narrow down the range of interactions that need be considered (by system and user). When the DC technique of pairwise or n-fold combination is applicable, it can greatly lessen the demands on users for memorisation and interface navigation. Direct Combination also appears to offers a new way of applying context-aware information. In this paper, we present Direct Combination as applied ambiently through a series of interaction scenarios, using an implemented prototype system

    Mobile Application Usability: Heuristic Evaluation and Evaluation of Heuristics

    Get PDF
    Ger Joyce, Mariana Lilley, Trevor Barker, and Amanda Jefferies, 'Mobile Application Usability: Heuristic Evaluation and Evaluation of Heuristics', paper presented at AHFE 2016 International Conference on Human Factors, Software, and Systems Engineering. Walt Disney World, Florida USA, 27-31 July 2016Many traditional usability evaluation methods do not consider mobile-specific issues. This can result in mobile applications that abound in usability issues. We empirically evaluate three sets of usability heuristics for use with mobile applications, including a set defined by the authors. While the set of heuristics defined by the authors surface more usability issues in a mobile application than other sets of heuristics, improvements to the set can be made

    Nomadic input on mobile devices: the influence of touch input technique and walking speed on performance and offset modeling

    Get PDF
    In everyday life people use their mobile phones on-the-go with different walking speeds and with different touch input techniques. Unfortunately, much of the published research in mobile interaction does not quantify the influence of these variables. In this paper, we analyze the influence of walking speed, gait pattern and input techniques on commonly used performance parameters like error rate, accuracy and tapping speed, and we compare the results to the static condition. We examine the influence of these factors on the machine learned offset model used to correct user input and we make design recommendations. The results show that all performance parameters degraded when the subject started to move, for all input techniques. Index finger pointing techniques demonstrated overall better performance compared to thumb-pointing techniques. The influence of gait phase on tap event likelihood and accuracy was demonstrated for all input techniques and all walking speeds. Finally, it was shown that the offset model built on static data did not perform as well as models inferred from dynamic data, which indicates the speed-specific nature of the models. Also, models identified using specific input techniques did not perform well when tested in other conditions, demonstrating the limited validity of offset models to a particular input technique. The model was therefore calibrated using data recorded with the appropriate input technique, at 75% of preferred walking speed, which is the speed to which users spontaneously slow down when they use a mobile device and which presents a tradeoff between accuracy and usability. This led to an increase in accuracy compared to models built on static data. The error rate was reduced between 0.05% and 5.3% for landscape-based methods and between 5.3% and 11.9% for portrait-based methods

    Mobility is the Message: Experiments with Mobile Media Sharing

    Get PDF
    This thesis explores new mobile media sharing applications by building, deploying, and studying their use. While we share media in many different ways both on the web and on mobile phones, there are few ways of sharing media with people physically near us. Studied were three designed and built systems: Push!Music, Columbus, and Portrait Catalog, as well as a fourth commercially available system – Foursquare. This thesis offers four contributions: First, it explores the design space of co-present media sharing of four test systems. Second, through user studies of these systems it reports on how these come to be used. Third, it explores new ways of conducting trials as the technical mobile landscape has changed. Last, we look at how the technical solutions demonstrate different lines of thinking from how similar solutions might look today. Through a Human-Computer Interaction methodology of design, build, and study, we look at systems through the eyes of embodied interaction and examine how the systems come to be in use. Using Goffman’s understanding of social order, we see how these mobile media sharing systems allow people to actively present themselves through these media. In turn, using McLuhan’s way of understanding media, we reflect on how these new systems enable a new type of medium distinct from the web centric media, and how this relates directly to mobility. While media sharing is something that takes place everywhere in western society, it is still tied to the way media is shared through computers. Although often mobile, they do not consider the mobile settings. The systems in this thesis treat mobility as an opportunity for design. It is still left to see how this mobile media sharing will come to present itself in people’s everyday life, and when it does, how we will come to understand it and how it will transform society as a medium distinct from those before. This thesis gives a glimpse at what this future will look like

    Human computer interaction for international development: past present and future

    Get PDF
    Recent years have seen a burgeoning interest in research into the use of information and communication technologies (ICTs) in the context of developing regions, particularly into how such ICTs might be appropriately designed to meet the unique user and infrastructural requirements that we encounter in these cross-cultural environments. This emerging field, known to some as HCI4D, is the product of a diverse set of origins. As such, it can often be difficult to navigate prior work, and/or to piece together a broad picture of what the field looks like as a whole. In this paper, we aim to contextualize HCI4D—to give it some historical background, to review its existing literature spanning a number of research traditions, to discuss some of its key issues arising from the work done so far, and to suggest some major research objectives for the future

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    Human-computer interaction for development (HCI4D):the Southern African landscape

    Get PDF
    Human-Computer interaction for development (HCI4D) research aims to maximise the usability of interfaces for interacting with technologies designed specifically for under-served, under-resourced, and under-represented populations. In this paper we provide a snapshot of the Southern African HCI4D research against the background of the global HCI4D research landscape.We commenced with a systematic literature review of HCI4D (2010-2017) then surveyed Southern African researchers working in the area. The contribution is to highlight the context- specific themes and challenges that emerged from our investigation

    Getting connected- at what cost? Some ethical issues on mobile HCI

    Get PDF
    The large scale deployment of mobile applications inevitably affects our daily lives and the whole culture. Not all of these effects are desirable. In a market economy, ethical issues are not the foremost drivers in the development of technology. In this paper, we ask whether the mobile human-computer interaction community could take an active role in discussing the issues which really matter in the development of technology for human beings, rather than concentrating on the fine tuning of emerging gadgets
    • 

    corecore