207 research outputs found

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Enhancing quality-of-service conditions using a cross-layer paradigm for ad-hoc vehicular communication

    Get PDF
    The Internet of Vehicles (IoVs) is an emerging paradigm aiming to introduce a plethora of innovative applications and services that impose a certain quality of service (QoS) requirements. The IoV mainly relies on vehicular ad-hoc networks (VANETs) for autonomous inter-vehicle communication and road-traffic safety management. With the ever-increasing demand to design new and emerging applications for VANETs, one challenge that continues to stand out is the provision of acceptable QoS requirements to particular user applications. Most existing solutions to this challenge rely on a single layer of the protocol stack. This paper presents a cross-layer decision-based routing protocol that necessitates choosing the best multi-hop path for packet delivery to meet acceptable QoS requirements. The proposed protocol acquires the information about the channel rate from the physical layer and incorporates this information in decision making, while directing traffic at the network layer level. Key performance metrics for the system design are analyzed using extensive experimental simulation scenarios. In addition, three data rate variant solutions are proposed to cater for various application-specific requirements in highways and urban environments. © 2013 IEEE

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    A Hybrid Algorithm for Improving the Quality of Service in MANET

    Get PDF
    A mobile ad-hoc network (MANET) exhibits a dynamic topology with flexible infrastructure. The MANET nodes may serve as both host and router functionalities. The routing feature of the MANET is a stand-alone multi-hop mobile network that can be utilized in many real-time applications. Therefore, identifying paths that ensure high Quality of Service (QoS), such as their topology and applications is a vital issue in MANET. A QoS-aware protocol in MANETs aims to find more efficient paths between the source and destination nodes of the network and, hence, the requirements of the QoS. This paper proposes a different hybrid algorithm that combines Cellular Automata (CA) with the African Buffalo Optimization (ABO), CAABO, to improve the QoS of MANETs. The CAABO optimizes the path selection in the ad-hoc on-demand distance vector (AODV) routing protocol. The test results show that with the aid of the CAABO, the AODV manifests energy and delay-aware routing protocol
    • 

    corecore