1,948 research outputs found

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Image segmentation using fuzzy LVQ clustering networks

    Get PDF
    In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation

    Self-organizing Maps in Web Mining and Semantic Web

    Get PDF

    Scalable aggregation predictive analytics: a query-driven machine learning approach

    Get PDF
    We introduce a predictive modeling solution that provides high quality predictive analytics over aggregation queries in Big Data environments. Our predictive methodology is generally applicable in environments in which large-scale data owners may or may not restrict access to their data and allow only aggregation operators like COUNT to be executed over their data. In this context, our methodology is based on historical queries and their answers to accurately predict ad-hoc queries’ answers. We focus on the widely used set-cardinality, i.e., COUNT, aggregation query, as COUNT is a fundamental operator for both internal data system optimizations and for aggregation-oriented data exploration and predictive analytics. We contribute a novel, query-driven Machine Learning (ML) model whose goals are to: (i) learn the query-answer space from past issued queries, (ii) associate the query space with local linear regression & associative function estimators, (iii) define query similarity, and (iv) predict the cardinality of the answer set of unseen incoming queries, referred to the Set Cardinality Prediction (SCP) problem. Our ML model incorporates incremental ML algorithms for ensuring high quality prediction results. The significance of contribution lies in that it (i) is the only query-driven solution applicable over general Big Data environments, which include restricted-access data, (ii) offers incremental learning adjusted for arriving ad-hoc queries, which is well suited for query-driven data exploration, and (iii) offers a performance (in terms of scalability, SCP accuracy, processing time, and memory requirements) that is superior to data-centric approaches. We provide a comprehensive performance evaluation of our model evaluating its sensitivity, scalability and efficiency for quality predictive analytics. In addition, we report on the development and incorporation of our ML model in Spark showing its superior performance compared to the Spark’s COUNT method

    Giriş gösterimlerinin kendini örgütleyen ve aşağıdan yukarıya çalışan akor şemalarına etkisi

    Get PDF
    Effects of input representation on self-organizing and bottom-up model of chord schema were investigated. A single layer self-organizing map was trained with 12 major and 12 minor chords. Training was repeated five times, each time with a different input representation. In this model, activation of chords is determined by the representation and activation of pitches that compose the chords. Important findings of chord perception were simulated with this model. Simulation results showed that input representation was critical to simulate all of the findings.Giriş gösterimlerinin kendini örgütleyen ve aşağıdan yukarıya çalışan akor şemalarına etkisi incelenmiştir. Tek katmanlı kendini örgütleyen ağ 12 major ve 12 minör akor ile eğitilmiştir. Eğitim her seferinde başka bir giriş gösterimi kullanılarak beş kez tekrar edilmiştir. Bu modelde akor gösterimlerinin seviyesi sadece akoru oluşturan seslerin gösterimleri ve seviyesi ile belirlenmektedir. Akor algısının önemli bulguları bu model ile benzetilmiştir. Benzetim sonuçları göstermektedir ki bütün bulguların modellenebilmesi için uygun giriş gösterimlerinin seçilmesi gerekmektedir
    corecore