36,234 research outputs found

    Cortical Learning of Recognition Categories: A Resolution of the Exemplar Vs. Prototype Debate

    Full text link
    Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.Defense Advanced Projects Research Agency SyNaPSE program (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC #801881-BS under HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (NSF SBE-0354378

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Forecasting Long-Term Government Bond Yields: An Application of Statistical and AI Models

    Get PDF
    This paper evaluates several artificial intelligence and classical algorithms on their ability of forecasting the monthly yield of the US 10-year Treasury bonds from a set of four economic indicators. Due to the complexity of the prediction problem, the task represents a challenging test for the algorithms under evaluation. At the same time, the study is of particular significance for the important and paradigmatic role played by the US market in the world economy. Four data-driven artificial intelligence approaches are considered, namely, a manually built fuzzy logic model, a machine learned fuzzy logic model, a self-organising map model and a multi-layer perceptron model. Their performance is compared with the performance of two classical approaches, namely, a statistical ARIMA model and an econometric error correction model. The algorithms are evaluated on a complete series of end-month US 10-year Treasury bonds yields and economic indicators from 1986:1 to 2004:12. In terms of prediction accuracy and reliability of the modelling procedure, the best results are obtained by the three parametric regression algorithms, namely the econometric, the statistical and the multi-layer perceptron model. Due to the sparseness of the learning data samples, the manual and the automatic fuzzy logic approaches fail to follow with adequate precision the range of variations of the US 10-year Treasury bonds. For similar reasons, the self-organising map model gives an unsatisfactory performance. Analysis of the results indicates that the econometric model has a slight edge over the statistical and the multi-layer perceptron models. This suggests that pure data-driven induction may not fully capture the complicated mechanisms ruling the changes in interest rates. Overall, the prediction accuracy of the best models is only marginally better than the prediction accuracy of a basic one-step lag predictor. This result highlights the difficulty of the modelling task and, in general, the difficulty of building reliable predictors for financial markets.interest rates; forecasting; neural networks; fuzzy logic.

    Art Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

    Full text link
    A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results are obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A prototype remote sensing example introduces each aspect of data processing and fuzzy ARTMAP classification. The example shows how the network automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction and assigns confidence estimates by training the system several times on different orderings of an input set.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-l-0409, N00014-95-0657

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    ARTMAP: Supervised Real-Time Learning and Classification of Nonstationary Data by a Self-Organizing Neural Network

    Full text link
    This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.British Petroleum (98-A-1204); Defense Advanced Research Projects Agency (90-0083, 90-0175, 90-0128); National Science Foundation (IRI-90-00539); Army Research Office (DAAL-03-88-K0088
    corecore