433 research outputs found

    On the Implementation of GNU Prolog

    Get PDF
    GNU Prolog is a general-purpose implementation of the Prolog language, which distinguishes itself from most other systems by being, above all else, a native-code compiler which produces standalone executables which don't rely on any byte-code emulator or meta-interpreter. Other aspects which stand out include the explicit organization of the Prolog system as a multipass compiler, where intermediate representations are materialized, in Unix compiler tradition. GNU Prolog also includes an extensible and high-performance finite domain constraint solver, integrated with the Prolog language but implemented using independent lower-level mechanisms. This article discusses the main issues involved in designing and implementing GNU Prolog: requirements, system organization, performance and portability issues as well as its position with respect to other Prolog system implementations and the ISO standardization initiative.Comment: 30 pages, 3 figures, To appear in Theory and Practice of Logic Programming (TPLP); Keywords: Prolog, logic programming system, GNU, ISO, WAM, native code compilation, Finite Domain constraint

    Towards Hybrid Intensional Programming with JLucid, Objective Lucid, and General Imperative Compiler Framework in the GIPSY

    Get PDF
    Pure Lucid programs are concurrent with very fine granularity. Sequential Threads (STs) are functions introduced to enlarge the grain size; they are passed from server to workers by Communication Procedures (CPs) in the General Intensional Programming System (GIPSY). A JLucid program combines Java code for the STs with Lucid code for parallel control. Thus first, in this thesis, we describe the way in which the new JLucid compiler generates STs and CPs. JLucid also introduces array support. Further exploration goes through the additional transformations that the Lucid family of languages has undergone to enable the use of Java objects and their members, in the Generic Intensional Programming Language (GIPL), and Indexical Lucid: first, in the form of JLucid allowing the use of pseudo-objects, and then through the specifically-designed the Objective Lucid language. The syntax and semantic definitions of Objective Lucid and the meaning of Java objects within an intensional program are provided with discussions and examples. Finally, there are many useful scientific and utility routines written in many imperative programming languages other than Java, for example in C, C++, Fortran, Perl, etc. Therefore, it is wise to provide a framework to facilitate inclusion of these languages into the GIPSY and their use by Lucid programs. A General Imperative Compiler Framework and its concrete implementation is proposed to address this issue

    OO-IP hybrid language design and a framework approach to the GIPC

    Get PDF
    Intensional Programming is a declarative programming paradigm in which expressions are evaluated in an inherently multidimensional context space. The Lucid family of programming languages is, to this day, the only programming languages of true intensional nature. Lucid being a functional language, Lucid programs are inherently parallel and their parallelism can be efficiently exploited by the adjunction of a procedural language to increase the granularity of its parallelism, forming hybrid Lucid languages. That very wide array of possibilities raises the need for an extremely flexible programming language investigation platform to investigate on this plethora of possibilities for Intensional Programming. That is the purpose of the General Intensional Programming System (GIPSY), especially, the General Intensional Programming Compiler (GIPC) component. The modularity, reusability and extensibility aspects of the framework approach make it an obvious candidate for the development of the GIPC. The framework presented in this thesis provides a better solution compared to all other techniques used to this day to implement the different variants of intensional programming. Because of the functionality of hybrid programming support in the GIPC framework, a new OO-IP hybrid language is designed for further research. This new hybrid language combines the essential characteristics of IPL and Java, and introduces the notion of object streams which makes it is possible that each element in an IPL stream could be an object with embedded intensional properties. Interestingly, this hybrid language also brings to Java objects the power which can explicitly express context, creating the novel concept of intensional objects, Le. objects whose evaluation is context-dependent, which are therein demonstrated to be translatable into standard objects. By this new feature, we extend the use and meaning of the notion of object and enrich the meaning of stream in IPL and semantics of Java. At the same time, during the procedure to introduce intensional objects and this OO-IP hybrid language, many factors are considered. These factors include how to integrate the new language with the GIPC framework design and the issues related to its integration in the current GIPSY implementation. Current semantic rules show that the new language can work well with the GIPC framework and the GIPSY implementation, which is another proof of the validity of our GIPC framework design. Ultimately, the proposed design is put into implementation in the GIPSY and the implementation put to test using programs from different application domains written in this new OO-IP languag

    Aspects of the collocational analysis of meaning with special reference to some Biblical Hebrew anatomical idioms

    Get PDF
    Although the biblical data presented can be properly assessed only by a Hebraist/Old Testament exegete, I have attempted to make the work a little more accessible to linguistic scientists without specialization in Hebrew through provision of English glosses of Hebrew passages (rarely of more than a biblical verse in length). Typically these glosses are from NEB, although where NEB's rendering does not closely match the Hebrew sequence (e.g., if NEB omits certain Hebrew phrases because they would be redundant or cumbersome in English, or adopts substantial emendations of NT, or is, in my opinion, erroneous in respect of a particular translation) I have utilized JB, or, occasionally, AV. Italicized sequences (narking expressions not directly expressed in the Hebrew original) in AV (and in the translation of Rash!) are not thus distinguished in my quotations, and I have used 'Lord' for AV and NEB 'LORD'. NEB has been chosen as the primary source because at a semantic, if not a stylistic, level it provides an 'idiomatic' translation, and because its emendations are easy to trace (through Brockington's work). The few tines that I wish to make a translation point particularly strongly or where I feel none of the forementioned translations to be adequate I provide my own glosses. Such renderings, unlike those quoted from other sources, are not accompanied by a citation of source. Within glosses words representing a collocation or other expression being discussed are capitalized. BHK/S is used as the source of quotations from the Hebrew Bible, although its division of cola is not displayed; the caesura (athnach) is sometimes indicated by the use of a new line, or, if only one line of text is displayed, by a double space within this line. In 'citation-forms' of Hebrew text, we utilize a 'plene' orthography. Chapter and verse references are always to the Hebrew Bible. ..

    Building Brains for Bodies

    Get PDF
    We describe a project to capitalize on newly available levels of computational resources in order to understand human cognition. We will build an integrated physical system including vision, sound input and output, and dextrous manipulation, all controlled by a continuously operating large scale parallel MIMD computer. The resulting system will learn to "think'' by building on its bodily experiences to accomplish progressively more abstract tasks. Past experience suggests that in attempting to build such an integrated system we will have to fundamentally change the way artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of intelligence. We expect to be able to better reconcile the theories that will be developed with current work in neuroscience

    Object-Oriented Intensional Programming: Intensional Classes Using Java and Lucid

    Full text link
    This article introduces Object-Oriented Intensional Programming (OO-IP), a new hybrid language between Object-Oriented and Intensional Programming Languages in the sense of the latest evolutions of Lucid. This new hybrid language combines the essential characteristics of Lucid and Java, and introduces the notion of object streams which makes it is possible that each element in a Lucid stream to be an object with embedded intensional properties. Interestingly, this hybrid language also brings to Java objects the power to explicitly express and manipulate the notion of context, creating the novel concept of intensional object, i.e. objects whose evaluation is context-dependent, which are here demonstrated to be translatable into standard objects. By this new approach, we extend the use and meaning of the notion of intensional objects and enrich the meaning of object streams in Lucid and semantics of intensional objects in Java.Comment: 27 pages, 8 listings, 2 tables, 5 figure
    corecore