3,884 research outputs found

    Intelligent failure-tolerant control

    Get PDF
    An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Real-time Forecasting and Control for Oscillating Wave Energy Devices

    Get PDF
    Ocean wave energy represents a signicant resource of renewable energy and can make an important contribution to the development of a more sustainable solution in support of the contemporary society, which is becoming more and more energy intensive. A perspective is given on the benefits that wave energy can introduce, in terms of variability of the power supply, when combined with oshore wind. Despite its potential, however, the technology for the generation of electricity from ocean waves is not mature yet. In order to raise the economic performance of Wave energy converters (WECs), still far from being competitive, a large scope exists for the improvement of their capacity factor through more intelligent control systems. Most control solutions proposed in the literature, for the enhancement of the power absorption of WECs, are not implemented in practise because they require future knowledge of the wave elevation or wave excitation force. The non-causality of the unconstrained optimal conditions, termed complex-conjugate control, for the maximum wave energy absorption of WECs consisting of oscillating systems, is analysed. A link between fundamental properties of the radiation of the floating body and the prediction horizon required for an effective implementation of complex-conjugate control is identified. An extensive investigation of the problem of wave elevation and wave excitation force forecasting is then presented. The prediction is treated as a purely stochastic problem, where future values of the wave elevation or wave excitation force are estimated from past measurements at the device location only. The correlation of ocean waves, in fact, allows the achievement of accurate predictions for 1 or 2 wave periods into the future, with linear Autoregressive (AR) models. A relationship between predictability of the excitation force and excitation properties of the floating body is also identified. Finally, a controller for an oscillating wave energy device is developed. Based on the assumption that the excitation force is a narrow-banded harmonic process, the controller is effectively tuned through a single parameter of immediate physical meaning, for performance and motion constraint handling. The non-causality is removed by the parametrisation, the only input of the controller being an on-line estimate of the frequency and amplitude of the excitation force. Simulations in (synthetic and real) irregular waves demonstrate that the solution allows the achievement of levels of power capture that are very close to non-causal complex-conjugate control, in the unconstrained case, and Model predictive control (MPC), in the constrained case. In addition, the hierarchical structure of the proposed controller allows the treatment of the issue of robustness to model uncertainties in quite a straightforward and effective way

    Phenotype Extraction: Estimation and Biometrical Genetic Analysis of Individual Dynamics

    Get PDF
    Within-person data can exhibit a virtually limitless variety of statistical patterns, but it can be difficult to distinguish meaningful features from statistical artifacts. Studies of complex traits have previously used genetic signals like twin-based heritability to distinguish between the two. This dissertation is a collection of studies applying state-space modeling to conceptualize and estimate novel phenotypic constructs for use in psychiatric research and further biometrical genetic analysis. The aims are to: (1) relate control theoretic concepts to health-related phenotypes; (2) design statistical models that formally define those phenotypes; (3) estimate individual phenotypic values from time series data; (4) consider hierarchical methods for biometrical genetic analysis of individual phenotypic variation

    The evolution and dynamics of stocks on the Johannesburg Securities Exchange and their implications for equity investment management

    Get PDF
    [No subject] This thesis explores the dynamics of the Johannesburg Stock Exchange returns to understand how they impact stock prices. The introductory chapter renders a brief overview of financial markets in general and the Johannesburg Securities Exchange (JSE) in particular. The second chapter employs the fractal analysis technique, a method for estimating the Hurst exponent, to examine the JSE indices. The results suggest that the JSE is fractal in nature, implying a long-term predictability property. The results also indicate a logical system of variation of the Hurst exponent by firm size, market characteristics and sector grouping. The third chapter investigates the economic and political events that affect different market sectors and how they are implicated in the structural dynamics of the JSE. It provides some insights into the degree of sensitivity of different market sectors to positive and negative news. The findings demonstrate transient episodes of nonlinearity that can be attributed to economic events and the state of the market. Chapter 4 looks at the evolution of risk measurement and the distribution of returns on the JSE. There is evidence of fat tails and that the Student t-distribution is a better fit for the JSE returns than the Normal distribution. The Gaussian based Value-at-Risk model also proved to be an ineffective risk measurement tool under high market volatility. In Chapter 5 simulations are used to investigate how different agent interactions affect market dynamics. The results show that it is possible for traders to switch between trading strategies and this evolutionary switching of strategies is dependent on the state of the market. Chapter 6 shows the extent to which endogeneity affects price formation. To explore this relationship, the Poisson Hawkes model, which combines exogenous influences with self-excited dynamics, is employed. Evidence suggests that the level of endogeneity has been increasing rapidly over the past decade. This implies that there is an increasing influence of internal dynamics on price formation. The findings also demonstrate that market crashes are caused by endogenous dynamics and exogenous shocks merely act as catalysts. Chapter 7 presents the hybrid adaptive intelligent model for financial time series prediction. Given evidence of non-linearity, heterogeneous agents and the fractal nature of the JSE market, neural networks, fuzzy logic and fractal theory are combined, to obtain a hybrid adaptive intelligent model. The proposed system outperformed traditional models

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio

    Methodologies for transforming data to information and advancing the understanding of water resources systems towards integrated water resources management

    Get PDF
    2017 Summer.Includes bibliographical references.The majority of river basins in the world, have undergone a great deal of transformations in terms of infrastructure and water management practices in order to meet increasing water needs due to population growth and socio-economic development. Surface water and groundwater systems are interwoven with environmental and socio-economic ones. The systems' dynamic nature, their complex interlinkages and interdependencies are inducing challenges for integrated water resources management. Informed decision-making process in water resources is deriving from a systematic analysis of the available data with the utilization of tools and models, by examining viable alternatives and their associated tradeoffs under the prism of a set of prudent priorities and expert knowledge. In an era of increasing volume and variety of data about natural and anthropogenic systems, opportunities arise for further enhancing data integration in problem-solving approaches and thus support decision-making for water resources planning and management. Although there is a plethora of variables monitored in various spatial and temporal scales, particularly in the United States, in real life, for water resources applications there are rarely, if ever, perfect data. Developing more systematic procedures to integrate the available data and harness their full potential of generating information, will improve the understanding of water resources systems and assist at the same time integrated water resources management efforts. The overarching objective of this study is to develop tools and approaches to overcome data obstacles in water resources management. This required the development of methodologies that utilize a wide range of water and environmental datasets in order to transform them into reliable and valuable information, which would address unanswered questions about water systems and water management practices, contributing to implementable efforts of integrated water resources management. More specifically, the objectives of this research are targeted in three complementary topics: drought, water demand, and groundwater supply. In this regard, their unified thread is the common quest for integrated river basin management (IRBM) under changing water resources conditions. All proposed methodologies have a common area of application namely the South Platte basin, located within Colorado. The area is characterized by limited water resources with frequent drought intervals. A system's vulnerability to drought due to the different manifestations of the phenomenon (meteorological, agricultural, hydrological, socio-economic and ecological) and the plethora of factors affecting it (precipitation patterns, the supply and demand trends, the socioeconomic background etc.) necessitates an integrated approach for delineating its magnitude and spatiotemporal extent and impacts. Thus, the first objective was to develop an implementable drought management policy tool based on the standardized drought vulnerability index framework and expanding it in order to capture more of drought's multifaceted effects. This study illustrated the advantages of a more transparent data rigorous methodology, which minimizes the need for qualitative information replacing it with a more quantitative one. It is believed that such approach may convey drought information to decision makers in a holistic manner and at the same time avoid the existing practices of broken linkages and fragmentation of reported drought impacts. Secondly, a multi-scale (well, HUC-12, and county level) comparative analysis framework was developed to identify the characteristics of the emergent water demand for unconventional oil and gas development. This effort revealed the importance of local conditions in well development patterns that influence water demand, the magnitude of water consumption in local scales in comparison to other water uses, the strategies of handling flowback water, and the need for additional data, and improved data collection methods for a detailed water life-cycle analysis including the associated tradeoffs. Finally, a novel, easy to implement, and computationally low cost methodology was developed for filling gaps in groundwater level time series. The proposed framework consists of four main components, namely: groundwater level time series; data (groundwater level, recharge and pumping) from a regional physically-based groundwater flow model; autoregressive integrated moving average with external inputs modeling; and the Ensemble Smoother (ES) technique. The methodology's efficacy to predict accurately groundwater levels was tested by conducting three numerical experiments at eighteen alluvial wells. The results suggest that the framework could serve as a valuable tool in gaining further insight of alluvium aquifer dynamics by filling missing groundwater level data in an intermittent or continuous (with relative short span) fashion. Overall, it is believed that this research has important implications in water resources decision making by developing implementable frameworks which advance further the understanding of water systems and may aid in integrated river basin management efforts
    • …
    corecore