2,324 research outputs found

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    MobileAppScrutinator: A Simple yet Efficient Dynamic Analysis Approach for Detecting Privacy Leaks across Mobile OSs

    Get PDF
    Smartphones, the devices we carry everywhere with us, are being heavily tracked and have undoubtedly become a major threat to our privacy. As "tracking the trackers" has become a necessity, various static and dynamic analysis tools have been developed in the past. However, today, we still lack suitable tools to detect, measure and compare the ongoing tracking across mobile OSs. To this end, we propose MobileAppScrutinator, based on a simple yet efficient dynamic analysis approach, that works on both Android and iOS (the two most popular OSs today). To demonstrate the current trend in tracking, we select 140 most representative Apps available on both Android and iOS AppStores and test them with MobileAppScrutinator. In fact, choosing the same set of apps on both Android and iOS also enables us to compare the ongoing tracking on these two OSs. Finally, we also discuss the effectiveness of privacy safeguards available on Android and iOS. We show that neither Android nor iOS privacy safeguards in their present state are completely satisfying

    Building a Framework for High-performance In-memory Message-Oriented Middleware

    Get PDF
    Message-Oriented Middleware (MOM) is a popular class of software used in many distributed applications, ranging from business systems and social networks to gaming and streaming media services. As workloads continue to grow both in terms of the number of users and the amount of content, modern MOM systems face increasing demands in terms of performance and scalability. Recent advances in networking such as Remote Direct Memory Access (RDMA) offer a more efficient data transfer mechanism compared to traditional kernel-level socket networking used by existing widely-used MOM systems. Unfortunately, RDMA’s complex interface has made it difficult for MOM systems to utilize its capabilities. In this thesis, we introduce a framework called RocketBufs, which provides abstractions and interfaces for constructing high-performance MOM systems. Applications implemented using RocketBufs produce and consume data using regions of memory called buffers while the framework is responsible for transmitting, receiving and synchronizing buffer access. RocketBufs’ buffer abstraction is designed to work efficiently with different transport protocols, allowing messages to be distributed using RDMA or TCP using the same APIs (i.e., by simply changing a configuration file). We demonstrate the utility and evaluate the performance of RocketBufs by using it to implement a publish/subscribe system called RBMQ. We compare it against two widely-used, industry-grade MOM systems, namely RabbitMQ and Redis. Our evaluations show that when using TCP, RBMQ achieves up to 1.9 times higher messaging throughput than RabbitMQ, a message queuing system with an equivalent flow control scheme. When RDMA is used, RBMQ shows significant gains in messaging throughput (up to 3.7 times higher than RabbitMQ and up to 1.7 times higher than Redis), as well as reductions in median delivery latency (up to 81% lower than RabbitMQ and 47% lower than Redis). In addition, on RBMQ subscriber hosts configured to use RDMA, data transfers occur with negligible CPU overhead regardless of the amount of data being transferred. This allows CPU resources to be used for other purposes like processing data. To further demonstrate the flexibility of RocketBufs, we use it to build a live streaming video application by integrating RocketBufs into a web server to receive disseminated video data. When compared with the same application built with Redis, the RocketBufs-based dissemination host achieves live streaming throughput up to 73% higher while disseminating data, and the RocketBufs-based web server shows a reduction of up to 95% in CPU utilization, allowing for up to 55% more concurrent viewers to be serviced

    Viriot: A cloud of things that offers iot infrastructures as a service

    Get PDF
    Many cloud providers offer IoT services that simplify the collection and processing of IoT information. However, the IoT infrastructure composed of sensors and actuators that produces this information remains outside the cloud; therefore, application developers must install, connect and manage the cloud. This requirement can be a market barrier, especially for small/medium software companies that cannot afford the infrastructural costs associated with it and would only prefer to focus on IoT application developments. Motivated by the wish to eliminate this barrier, this paper proposes a Cloud of Things platform, called VirIoT, which fully brings the Infrastructure as a service model typical of cloud computing to the world of Internet of Things. VirIoT provides users with virtual IoT infrastructures (Virtual Silos) composed of virtual things, with which users can interact through dedicated and standardized broker servers in which the technology can be chosen among those offered by the platform, such as oneM2M, NGSI and NGSI-LD. VirIoT allows developers to focus their efforts exclusively on IoT applications without worrying about infrastructure management and allows cloud providers to expand their IoT services portfolio. VirIoT uses external things and cloud/edge computing resources to deliver the IoT virtualization services. Its open-source architecture is microservice-based and runs on top of a distributed Kubernetes platform with nodes in central and edge data centers. The architecture is scalable, efficient and able to support the continuous integration of heterogeneous things and IoT standards, taking care of interoperability issues. Using a VirIoT deployment spanning data centers in Europe and Japan, we conducted a performance evaluation with a two-fold objective: showing the efficiency and scalability of the architecture; and leveraging VirIoT’s ability to integrate different IoT standards in order to make a fair comparison of some open-source IoT Broker implementations, namely Mobius for oneM2M, Orion for NGSIv2, Orion-LD and Scorpio for NGSI-LD

    Mapping cross-cloud systems:challenges and opportunities

    Get PDF
    Recent years have seen significant growth in the cloud computing market, both in terms of provider competition (including private offerings) and customer adoption. However, the cloud computing world still lacks adopted standard programming interfaces, which has a knock-on effect on the costs associated with interoperability and severely limits the flexibility and portability of applications and virtual infrastructures. This has brought about an increasing number of cross-cloud architectures, i.e. systems that span across cloud provisioning boundaries. This position paper condenses discussions from the CrossCloud event series to outline the types of cross-cloud systems and their associated design decisions, and laments challenges and opportunities they create

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    HILT IV : subject interoperability through building and embedding pilot terminology web services

    Get PDF
    A report of work carried out within the JISC-funded HILT Phase IV project, the paper looks at the project's context against the background of other recent and ongoing terminologies work, describes its outcome and conclusions, including technical outcomes and terminological characteristics, and considers possible future research and development directions. The Phase IV project has taken HILT to the point where the launch of an operational support service in the area of subject interoperability is a feasible option and where both investigation of specific needs in this area and practical collaborative work are sensible and feasible next steps. Moving forward requires detailed work, not only on terminology interoperability and associated service delivery issues, but also on service and end user needs and engagement, service sustainability issues, and the practicalities of interworking with other terminology services and projects in UK, Europe, and global contexts
    corecore