1,297 research outputs found

    Contention-based learning MAC protocol for broadcast Vehicle-to-Vehicle Communication

    Get PDF
    Vehicle-to-Vehicle Communication (V2V) is an upcoming technology that can enable safer, more efficient transportation via wireless connectivity among moving cars. The key enabling technology, specifying the physical and medium access control (MAC) layers of the V2V stack is IEEE 802.11p, which belongs in the IEEE 802.11 family of protocols originally designed for use in WLANs. V2V networks are formed on an ad hoc basis from vehicular stations that rely on the delivery of broadcast transmissions for their envisioned services and applications. Broadcast is inherently more sensitive to channel contention than unicast due to the MAC protocol’s inability to adapt to increased network traffic and colliding packets never being detected or recovered. This paper addresses this inherent scalability problem of the IEEE 802.11p MAC protocol. The density of the network can range from being very sparse to hundreds of stations contenting for access to the channel. A suitable MAC needs to offer the capacity for V2V exchanges even in such dense topologies which will be common in urban networks. We present a modified version of the IEEE 802.11p MAC based on Reinforcement Learning (RL), aiming to reduce the packet collision probability and bandwidth wastage. Implementation details regarding both the learning algorithm tuning and the networking side are provided. We also present simulation results regarding achieved message packet delivery and possible delay overhead of this solution. Our solution shows up to 70% increase in throughput compared to the standard IEEE 802.11p as the network traffic increases, while maintaining the transmission latency within the acceptable levels

    Routing And Communication Path Mapping In VANETS

    Get PDF
    Vehicular ad-hoc network (VANET) has quickly become an important aspect of the intelligent transport system (ITS), which is a combination of information technology, and transport works to improve efficiency and safety through data gathering and dissemination. However, transmitting data over an ad-hoc network comes with several issues such as broadcast storms, hidden terminal problems and unreliability; these greatly reduce the efficiency of the network and hence the purpose for which it was developed. We therefore propose a system of utilising information gathered externally from the node or through the various layers of the network into the access layer of the ETSI communication stack for routing to improve the overall efficiency of data delivery, reduce hidden terminals and increase reliability. We divide route into segments and design a set of metric system to select a controlling node as well as procedure for data transfer. Furthermore we propose a system for faster data delivery based on priority of data and density of nodes from route information while developing a map to show the communication situation of an area. These metrics and algorithms will be simulated in further research using the NS-3 environment to demonstrate the effectiveness

    All-to-all Broadcast for Vehicular Networks Based on Coded Slotted ALOHA

    Get PDF
    We propose an uncoordinated all-to-all broadcast protocol for periodic messages in vehicular networks based on coded slotted ALOHA (CSA). Unlike classical CSA, each user acts as both transmitter and receiver in a half-duplex mode. As in CSA, each user transmits its packet several times. The half-duplex mode gives rise to an interesting design trade-off: the more the user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We compare the proposed protocol with carrier sense multiple access with collision avoidance, currently adopted as a multiple access protocol for vehicular networks. The results show that the proposed protocol greatly increases the number of users in the network that reliably communicate with each other. We also provide analytical tools to predict the performance of the proposed protocol.Comment: v2: small typos fixe
    • …
    corecore