864 research outputs found

    Non-Orthogonal Contention-Based Access for URLLC Devices with Frequency Diversity

    Get PDF
    We study coded multichannel random access schemes for ultra-reliable low-latency uplink transmissions. We concentrate on non-orthogonal access in the frequency domain, where users transmit over multiple orthogonal subchannels and inter-user collisions limit the available diversity. Two different models for contention-based random access over Rayleigh fading resources are investigated. First, a collision model is considered, in which the packet is replicated onto KK available resources, K′≤KK' \leq K of which are received without collision, and treated as diversity branches by a maximum-ratio combining (MRC) receiver. The resulting diversity degree K′K' depends on the arrival process and coding strategy. In the second model, the slots subject to collisions are also used for MRC, such that the number of diversity branches KK is constant, but the resulting combined signal is affected by multiple access interference. In both models, the performance of random and deterministic repetition coding is compared. The results show that the deterministic coding approach can lead to a significantly superior performance when the arrival rate of the intermittent URLLC transmissions is low.Comment: 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) - Special Session on Signal Processing for NOMA Communication System

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    On Throughput Maximization of Grant-Free Access with Reliability-Latency Constraints

    Full text link
    Enabling autonomous driving and industrial automation with wireless networks poses many challenges, which are typically abstracted through reliability and latency requirements. One of the main contributors to latency in cellular networks is the reservation-based access, which involves lengthy and resource-inefficient signaling exchanges. An alternative is to use grant-free access, in which there is no resource reservation. A handful of recent works investigated how to fulfill reliability and latency requirements with different flavors of grant-free solutions. However, the resource efficiency, i.e., the throughput, has been only the secondary focus. In this work, we formulate the throughput of grant-free access under reliability-latency constraints, when the actual number of arrived users or only the arrival distribution are known. We investigate how these different levels of knowledge about the arrival process influence throughput performance of framed slotted ALOHA with KK-multipacket reception, for the Poisson and Beta arrivals. We show that the throughput under reliability-latency requirements can be significantly improved for the higher expected load of the access network, if the actual number of arrived users is known. This insight motivates the use of techniques for the estimation of the number of arrived users, as this knowledge is not readily available in grant-free access. We also asses the impact of estimation error, showing that for high reliability-latency requirements the gains in throughput are still considerable.Comment: Accepted for publication in ICC'201
    • …
    corecore