2,068 research outputs found

    êł ì„±ëŠ„ 컎퓚팅 시슀템에서 ëČ„ìŠ€íŠž ëČ„íŒë„Œ 위한 I/O 분늏 êž°ëČ•ì˜ 싀슝적 ê”Źí˜„

    Get PDF
    í•™ìœ„ë…ŒëŹž(ì„ì‚Ź)--서욞대학ꔐ 대학원 :êł”êłŒëŒ€í•™ ì»Ží“ší„°êł”í•™ë¶€,2019. 8. 엄현상.To meet the exascale I/O requirements in the High-Performance Computing (HPC), a new I/O subsystem, named Burst Buffer, based on non-volatile memory, has been developed. However, the diverse HPC workloads and the bursty I/O pattern cause severe data fragmentation to SSDs, which creates the need for expensive garbage collection (GC) and also increase the number of bytes actually written to SSD. The new multi-stream feature in SSDs offers an option to reduce the cost of garbage collection. In this paper, we leverage this multi-stream feature to group the I/O streams based on the user IDs and implement this strategy in a burst buffer we call BIOS, short for Burst Buffer with an I/O Separation scheme. Furthermore, to optimize the I/O separation scheme in burst buffer environments, we propose a stream-aware scheduling policy based on burst buffer pools in workload manager and implement the real burst buffer system, BIOS framework, by integrating the BIOS with workload manager. We evaluate the BIOS and framework with a burst buffer I/O traces from Cori Supercomputer including a diverse set of applications. We also disclose and analyze the benefits and limitations of using I/O separation scheme in HPC systems. Experimental results show that the BIOS could improve the performance by 1.44× on average and reduce the Write Amplification Factor (WAF) by up to 1.20×, and prove that the framework can keep on the benefits of the I/O separation scheme in the HPC environment.Abstract Introduction 1 Background and Challenges 5 Burst Buffer 5 Write Amplification in SSDs 6 Multi-streamed SSD 7 Challenges of Multi-stream Feature in Burst Buffers 7 I/O Separation Scheme in Burst Buffer 10 Stream Allocation Criteria 10 Implementation 12 Limitations of User ID-based Stream Allocation 14 BIOS Framework 15 Support in Workload Manager 15 Burst Buffer Pools 16 Stream-Aware Scheduling Policy 18 Workflow of BIOS Framework 20 Evaluation 21 Experiment Setup 21 Evaluation with Synthetic Workload 21 Evaluation with HPC Applications 25 Evaluation with Emulated Workload 27 Evaluation with Different Striping Configuration 29 Evaluation on BIOS Framework 30 Summary and Lessons Learned 33 An I/O Separation Scheme in Burst Buffer 33 Evaluation with Synthetic Workload 33 Evaluation with HPC Applications 33 Evaluation with Emulated Workload 34 Evaluation with Striping Configurations 34 A BIOS Framework 34 Evaluation with Real Burst Buffer Environments 34 Discussion 36 Limited Number of Nodes 36 Advanced BIOS Framework 37 Related work 38 Conclusions 40 Bibliography 42 ìŽˆëĄ 48Maste

    Implementation and evaluation of the sensornet protocol for Contiki

    Get PDF
    Sensornet Protocol (SP) is a link abstraction layer between the network layer and the link layer for sensor networks. SP was proposed as the core of a future-oriented sensor node architecture that allows flexible and optimized combination between multiple coexisting protocols. This thesis implements the SP sensornet protocol on the Contiki operating system in order to: evaluate the effectiveness of the original SP services; explore further requirements and implementation trade-offs uncovered by the original proposal. We analyze the original SP design and the TinyOS implementation of SP to design the Contiki port. We implement the data sending and receiving part of SP using Contiki processes, and the neighbor management part as a group of global routines. The evaluation consists of a single-hop traffic throughput test and a multihop convergecast test. Both tests are conducted using both simulation and experimentation. We conclude from the evaluation results that SP's link-level abstraction effectively improves modularity in protocol construction without sacrificing performance, and our SP implementation on Contiki lays a good foundation for future protocol innovations in wireless sensor networks

    Parallelism-Aware Memory Interference Delay Analysis for COTS Multicore Systems

    Full text link
    In modern Commercial Off-The-Shelf (COTS) multicore systems, each core can generate many parallel memory requests at a time. The processing of these parallel requests in the DRAM controller greatly affects the memory interference delay experienced by running tasks on the platform. In this paper, we model a modern COTS multicore system which has a nonblocking last-level cache (LLC) and a DRAM controller that prioritizes reads over writes. To minimize interference, we focus on LLC and DRAM bank partitioned systems. Based on the model, we propose an analysis that computes a safe upper bound for the worst-case memory interference delay. We validated our analysis on a real COTS multicore platform with a set of carefully designed synthetic benchmarks as well as SPEC2006 benchmarks. Evaluation results show that our analysis is more accurately capture the worst-case memory interference delay and provides safer upper bounds compared to a recently proposed analysis which significantly under-estimate the delay.Comment: Technical Repor

    Efficient Resource Management Mechanism for 802.16 Wireless Networks Based on Weighted Fair Queuing

    Get PDF
    Wireless Networking continues on its path of being one of the most commonly used means of communication. The evolution of this technology has taken place through the design of various protocols. Some common wireless protocols are the WLAN, 802.16 or WiMAX, and the emerging 802.20, which specializes in high speed vehicular networks, taking the concept from 802.16 to higher levels of performance. As with any large network, congestion becomes an important issue. Congestion gains importance as more hosts join a wireless network. In most cases, congestion is caused by the lack of an efficient mechanism to deal with exponential increases in host devices. This can effectively lead to very huge bottlenecks in the network causing slow sluggish performance, which may eventually reduce the speed of the network. With continuous advancement being the trend in this technology, the proposal of an efficient scheme for wireless resource allocation is an important solution to the problem of congestion. The primary area of focus will be the emerging standard for wireless networks, the 802.16 or “WiMAX”. This project, attempts to propose a mechanism for an effective resource management mechanism between subscriber stations and the corresponding base station

    Contention-aware performance monitoring counter support for real-time MPSoCs

    Get PDF
    Tasks running in MPSoCs experience contention delays when accessing MPSoC’s shared resources, complicating task timing analysis and deriving execution time bounds. Understanding the Actual Contention Delay (ACD) each task suffers due to other corunning tasks, and the particular hardware shared resources in which contention occurs, is of prominent importance to increase confidence on derived execution time bounds of tasks. And, whenever those bounds are violated, ACD provides information on the reasons for overruns. Unfortunately, existing MPSoC designs considered in real-time domains offer limited hardware support to measure tasks’ ACD losing all these potential benefits. In this paper we propose the Contention Cycle Stack (CCS), a mechanism that extends performance monitoring counters to track specific events that allow estimating the ACD that each task suffers from every contending task on every hardware shared resource. We build the CCS using a set of specialized low-overhead Performance Monitoring Counters for the Cobham Gaisler GR740 (NGMP) MPSoC – used in the space domain – for which we show CCS’s benefits.The research leading to these results has received funding from the European Space Agency under contracts 4000109680, 4000110157 and NPI 4000102880, and the Ministry of Science and Technology of Spain under contract TIN-2015-65316-P. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters
    • 

    corecore