343 research outputs found

    A low-power network search engine based on statistical partitioning

    Get PDF
    Network search engines based on Ternary CAMs are widely used in routers. However, due to parallel search nature of TCAMs power consumption becomes a critical issue. In this work we propose an architecture that partitions the lookup table into multiple TCAM chips based on individual TCAM cell status and achieves lower power figures

    Bridging the Gap: FPGAs as Programmable Switches

    Full text link
    The emergence of P4, a domain specific language, coupled to PISA, a domain specific architecture, is revolutionizing the networking field. P4 allows to describe how packets are processed by a programmable data plane, spanning ASICs and CPUs, implementing PISA. Because the processing flexibility can be limited on ASICs, while the CPUs performance for networking tasks lag behind, recent works have proposed to implement PISA on FPGAs. However, little effort has been dedicated to analyze whether FPGAs are good candidates to implement PISA. In this work, we take a step back and evaluate the micro-architecture efficiency of various PISA blocks. We demonstrate, supported by a theoretical and experimental analysis, that the performance of a few PISA blocks is severely limited by the current FPGA architectures. Specifically, we show that match tables and programmable packet schedulers represent the main performance bottlenecks for FPGA-based programmable switches. Thus, we explore two avenues to alleviate these shortcomings. First, we identify network applications well tailored to current FPGAs. Second, to support a wider range of networking applications, we propose modifications to the FPGA architectures which can also be of interest out of the networking field.Comment: To be published in : IEEE International Conference on High Performance Switching and Routing 202

    An algorithm for fast route lookup and update

    Get PDF
    Increase in routing table sizes, number of updates, traffic, speed of links and migration to IPv6 have made IP address lookup, based on longest prefix matching, a major bottleneck for high performance routers. Several schemes are evaluated and compared based on complexity analysis and simulation results. A trie based scheme, called Linked List Cascade Addressable Trie (LLCAT) is presented. The strength of LLCAT comes from the fact that it is easy to be implemented in hardware, and also routing table update operations are performed incrementally requiring very few memory operations guaranteed for worst case to satisfy requirements of dynamic routing tables in high speed routers. Application of compression schemes to this algorithm is also considered to improve memory consumption and search time. The algorithm is implemented in C language and simulation results with real-life data is presented along with detailed description of the algorithm
    • …
    corecore