29,919 research outputs found

    Audio Content-Based Music Retrieval

    Get PDF
    The rapidly growing corpus of digital audio material requires novel retrieval strategies for exploring large music collections. Traditional retrieval strategies rely on metadata that describe the actual audio content in words. In the case that such textual descriptions are not available, one requires content-based retrieval strategies which only utilize the raw audio material. In this contribution, we discuss content-based retrieval strategies that follow the query-by-example paradigm: given an audio query, the task is to retrieve all documents that are somehow similar or related to the query from a music collection. Such strategies can be loosely classified according to their "specificity", which refers to the degree of similarity between the query and the database documents. Here, high specificity refers to a strict notion of similarity, whereas low specificity to a rather vague one. Furthermore, we introduce a second classification principle based on "granularity", where one distinguishes between fragment-level and document-level retrieval. Using a classification scheme based on specificity and granularity, we identify various classes of retrieval scenarios, which comprise "audio identification", "audio matching", and "version identification". For these three important classes, we give an overview of representative state-of-the-art approaches, which also illustrate the sometimes subtle but crucial differences between the retrieval scenarios. Finally, we give an outlook on a user-oriented retrieval system, which combines the various retrieval strategies in a unified framework

    A Concept for Using Combined Multimodal Queries in Digital Music Libraries

    Get PDF
    Περιέχει το πλήρες κείμενοIn this paper, we propose a concept for using combined multimodal queries in the context of digital music libraries. Whereas usual mechanisms for content-based music retrieval only consider a single query mode, such as query-by-humming, full-text lyrics-search or query-by-example using short audio snippets, our proposed concept allows to combine those different modalities into one integrated query. Our particular contributions consist of concepts for query formulation, combined content-based retrieval and presentation of a suitably ranked result list. The proposed concepts have been realized within the context of the PROBADO Music Repository and allow for music retrieval based on combining full-text lyrics search and score-based query-by-example search

    Music information retrieval: conceptuel framework, annotation and user behaviour

    Get PDF
    Understanding music is a process both based on and influenced by the knowledge and experience of the listener. Although content-based music retrieval has been given increasing attention in recent years, much of the research still focuses on bottom-up retrieval techniques. In order to make a music information retrieval system appealing and useful to the user, more effort should be spent on constructing systems that both operate directly on the encoding of the physical energy of music and are flexible with respect to users’ experiences. This thesis is based on a user-centred approach, taking into account the mutual relationship between music as an acoustic phenomenon and as an expressive phenomenon. The issues it addresses are: the lack of a conceptual framework, the shortage of annotated musical audio databases, the lack of understanding of the behaviour of system users and shortage of user-dependent knowledge with respect to high-level features of music. In the theoretical part of this thesis, a conceptual framework for content-based music information retrieval is defined. The proposed conceptual framework - the first of its kind - is conceived as a coordinating structure between the automatic description of low-level music content, and the description of high-level content by the system users. A general framework for the manual annotation of musical audio is outlined as well. A new methodology for the manual annotation of musical audio is introduced and tested in case studies. The results from these studies show that manually annotated music files can be of great help in the development of accurate analysis tools for music information retrieval. Empirical investigation is the foundation on which the aforementioned theoretical framework is built. Two elaborate studies involving different experimental issues are presented. In the first study, elements of signification related to spontaneous user behaviour are clarified. In the second study, a global profile of music information retrieval system users is given and their description of high-level content is discussed. This study has uncovered relationships between the users’ demographical background and their perception of expressive and structural features of music. Such a multi-level approach is exceptional as it included a large sample of the population of real users of interactive music systems. Tests have shown that the findings of this study are representative of the targeted population. Finally, the multi-purpose material provided by the theoretical background and the results from empirical investigations are put into practice in three music information retrieval applications: a prototype of a user interface based on a taxonomy, an annotated database of experimental findings and a prototype semantic user recommender system. Results are presented and discussed for all methods used. They show that, if reliably generated, the use of knowledge on users can significantly improve the quality of music content analysis. This thesis demonstrates that an informed knowledge of human approaches to music information retrieval provides valuable insights, which may be of particular assistance in the development of user-friendly, content-based access to digital music collections

    Audio Signal Processing Using Time-Frequency Approaches: Coding, Classification, Fingerprinting, and Watermarking

    Get PDF
    Audio signals are information rich nonstationary signals that play an important role in our day-to-day communication, perception of environment, and entertainment. Due to its non-stationary nature, time- or frequency-only approaches are inadequate in analyzing these signals. A joint time-frequency (TF) approach would be a better choice to efficiently process these signals. In this digital era, compression, intelligent indexing for content-based retrieval, classification, and protection of digital audio content are few of the areas that encapsulate a majority of the audio signal processing applications. In this paper, we present a comprehensive array of TF methodologies that successfully address applications in all of the above mentioned areas. A TF-based audio coding scheme with novel psychoacoustics model, music classification, audio classification of environmental sounds, audio fingerprinting, and audio watermarking will be presented to demonstrate the advantages of using time-frequency approaches in analyzing and extracting information from audio signals.</p

    Towards incorporating the notion of feature shape in music and text retrieval

    Get PDF
    Extracted feature data augment information resources with concrete characterizations of their content, but only approximate to the meaningful high-level descriptions typically expected by digital musicology scholars (domain experts with some technological affinity, but with no expertise in signal processing or feature data). Feature shapes provide abstract aggregations of feature types which share common characteristics when applied in extraction workflows. We explore the feasibility of feature shape-based filtering and querying within a large audio dataset of live music performances, employing operation sequences as specified by the Audio Feature Ontology and Vocabulary. We further implement analogous semantic structures for the HathiTrust Extracted Feature Dataset to demonstrate the general applicability of feature shapes in music and text retrieval

    Music Synchronization, Audio Matching, Pattern Detection, and User Interfaces for a Digital Music Library System

    Get PDF
    Over the last two decades, growing efforts to digitize our cultural heritage could be observed. Most of these digitization initiatives pursuit either one or both of the following goals: to conserve the documents - especially those threatened by decay - and to provide remote access on a grand scale. For music documents these trends are observable as well, and by now several digital music libraries are in existence. An important characteristic of these music libraries is an inherent multimodality resulting from the large variety of available digital music representations, such as scanned score, symbolic score, audio recordings, and videos. In addition, for each piece of music there exists not only one document of each type, but many. Considering and exploiting this multimodality and multiplicity, the DFG-funded digital library initiative PROBADO MUSIC aimed at developing a novel user-friendly interface for content-based retrieval, document access, navigation, and browsing in large music collections. The implementation of such a front end requires the multimodal linking and indexing of the music documents during preprocessing. As the considered music collections can be very large, the automated or at least semi-automated calculation of these structures would be recommendable. The field of music information retrieval (MIR) is particularly concerned with the development of suitable procedures, and it was the goal of PROBADO MUSIC to include existing and newly developed MIR techniques to realize the envisioned digital music library system. In this context, the present thesis discusses the following three MIR tasks: music synchronization, audio matching, and pattern detection. We are going to identify particular issues in these fields and provide algorithmic solutions as well as prototypical implementations. In Music synchronization, for each position in one representation of a piece of music the corresponding position in another representation is calculated. This thesis focuses on the task of aligning scanned score pages of orchestral music with audio recordings. Here, a previously unconsidered piece of information is the textual specification of transposing instruments provided in the score. Our evaluations show that the neglect of such information can result in a measurable loss of synchronization accuracy. Therefore, we propose an OCR-based approach for detecting and interpreting the transposition information in orchestral scores. For a given audio snippet, audio matching methods automatically calculate all musically similar excerpts within a collection of audio recordings. In this context, subsequence dynamic time warping (SSDTW) is a well-established approach as it allows for local and global tempo variations between the query and the retrieved matches. Moving to real-life digital music libraries with larger audio collections, however, the quadratic runtime of SSDTW results in untenable response times. To improve on the response time, this thesis introduces a novel index-based approach to SSDTW-based audio matching. We combine the idea of inverted file lists introduced by Kurth and Müller (Efficient index-based audio matching, 2008) with the shingling techniques often used in the audio identification scenario. In pattern detection, all repeating patterns within one piece of music are determined. Usually, pattern detection operates on symbolic score documents and is often used in the context of computer-aided motivic analysis. Envisioned as a new feature of the PROBADO MUSIC system, this thesis proposes a string-based approach to pattern detection and a novel interactive front end for result visualization and analysis

    Geolocation Adaptive Music Player

    Get PDF
    date-added: 2017-12-22 20:02:39 +0000 date-modified: 2017-12-22 20:05:50 +0000 keywords: adaptive music, intelligent music player, semantic audio, feature extraction bdsk-url-1: https://smartech.gatech.edu/bitstream/handle/1853/54586/WAC2016-47.pdfdate-added: 2017-12-22 20:02:39 +0000 date-modified: 2017-12-22 20:05:50 +0000 keywords: adaptive music, intelligent music player, semantic audio, feature extraction bdsk-url-1: https://smartech.gatech.edu/bitstream/handle/1853/54586/WAC2016-47.pdfWe present a web-based cross-platform adaptive music player that combines music information retrieval (MIR) and audio processing technologies with the interaction capabilities offered by GPS-equipped mobile devices. The application plays back a list of music tracks, which are linked to geographic paths in a map. The music player has two main enhanced features that adjust to the location of the user, namely, adaptable length of the songs and automatic transitions between tracks. Music tracks are represented as data packages containing audio and metadata (descriptive and behavioral) that builds on the concept of Digital Music Object (DMO). This representation, in line with nextgeneration web technologies, allows for exible production and consumption of novel musical experiences. A content provider assembles a data pack with music, descriptive analysis and action parameters that users can experience and control within the restrictions and templates defined by the provider
    corecore