63,203 research outputs found

    Video retrieval using objects and ostensive relevance feedback

    Get PDF
    The thesis discusses and evaluates a model of video information retrieval that incorporates a variation of Relevance Feedback and facilitates object-based interaction and ranking. Video and image retrieval systems suffer from poor retrieval performance compared to text-based information retrieval systems and this is mainly due to the poor discrimination power of visual features that provide the search index. Relevance Feedback is an iterative approach where the user provides the system with relevant and non-relevant judgements of the results and the system re-ranks the results based on the user judgements. Relevance feedback for video retrieval can help overcome the poor discrimination power of the features with the user essentially pointing the system in the right direction based on their judgements. The ostensive relevance feedback approach discussed in this work weights user judgements based on the o r d e r in which they are made with newer judgements weighted higher than older judgements. The main aim of the thesis is to explore the benefit of ostensive relevance feedback for video retrieval with a secondary aim of exploring the effectiveness of object retrieval. A user experiment has been developed in which three video retrieval system variants are evaluated on a corpus of video content. The first system applies standard relevance feedback weighting while the second and third apply ostensive relevance feedback with variations in the decay weight. In order to evaluate effective object retrieval, animated video content provides the corpus content for the evaluation experiment as animated content offers the highest performance for object detection and extraction

    An adaptive technique for content-based image retrieval

    Get PDF
    We discuss an adaptive approach towards Content-Based Image Retrieval. It is based on the Ostensive Model of developing information needs—a special kind of relevance feedback model that learns from implicit user feedback and adds a temporal notion to relevance. The ostensive approach supports content-assisted browsing through visualising the interaction by adding user-selected images to a browsing path, which ends with a set of system recommendations. The suggestions are based on an adaptive query learning scheme, in which the query is learnt from previously selected images. Our approach is an adaptation of the original Ostensive Model based on textual features only, to include content-based features to characterise images. In the proposed scheme textual and colour features are combined using the Dempster-Shafer theory of evidence combination. Results from a user-centred, work-task oriented evaluation show that the ostensive interface is preferred over a traditional interface with manual query facilities. This is due to its ability to adapt to the user's need, its intuitiveness and the fluid way in which it operates. Studying and comparing the nature of the underlying information need, it emerges that our approach elicits changes in the user's need based on the interaction, and is successful in adapting the retrieval to match the changes. In addition, a preliminary study of the retrieval performance of the ostensive relevance feedback scheme shows that it can outperform a standard relevance feedback strategy in terms of image recall in category search

    A Prototype System using Lexical Chains for Web Images Retrieval Based on Text Description and Visual Features

    Get PDF
    Abstract--Content Based Image Retrieval, in the current scenario has not been analyzed adequate in the existing system. Here, we implement a prototype system for web based image retrieval. The system is based on description of images by lexical chains which are extracted from text related images in a web page. In this paper, we provide Relevance Feedback (RF) techniques that aim to the real world user requirements. The relevance feedback techniques, based on image text description are expanded to support image retrieval by combining textual and visual features. All the feedback techniques are implemented and compared with precision and recall criteria. The experimental results prove that retrieval methods that makes use of both text and visual features achieve overall better results than methods based only on image’s text description

    Promising Large Scale Image Retrieval by Using Intelligent Semantic Binary Code Generation Technique

    Get PDF
    AbstractA scalable content based image retrieval system for large-scale www database is designed and implemented. Million images on internet is big challenge for accurate and efficient image retrieval as per user requirement. Proposed system exploits semantic binary code generation techniques with semantic hashing function, fine and coarse similarity measure technique, automatic and manual relevance feedback technique which improve accuracy, speed of image retrieval. With dramatic growth of internet technology, scalable image retrieval system is a need of recent web based image retrieval applications such as biomedical imaging, medical diagnosis, space science application etc. Proposed system accomplish requirement of scalable, accurate and swift image retrieval system. Experimental result clearly shows that performance of image retrieval is improved in term of accuracy, efficiency and retrieval time

    Association-based image retrieval

    Get PDF
    With advances in the computer technology and the World Wide Web there has been an explosion in the amount and complexity of multimedia data that are generated, stored, transmitted, analyzed, and accessed. In order to extract useful information from this huge amount of data, many content-based image retrieval (CBIR) systems have been developed in the last decade. A typical CBIR system captures image features that represent image properties such as color, texture, or shape of objects in the query image and try to retrieve images from the database with similar features. Recent advances in CBIR systems include relevance feedback based interactive systems. The main advantage of CBIR systems with relevance feedback is that these systems take into account the gap between the high-level concepts and low-level features and subjectivity of human perception of visual content. In this paper, we propose a new approach for image storage and retrieval called association-based image retrieval (ABIR). We try to mimic human memory. The human brain stores and retrieves images by association. We use a generalized bi-directional associative memory (GBAM) to store associations between feature vectors. The results of our simulation are presented in the paper

    Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems

    Full text link
    This master tesis deals with the problem of image retrieval from large image databases. A particularly interesting problem is the retrieval of all images which are similar to one in the user's mind, taking into account his/her feedback which is expressed as positive or negative preferences for the images that the system progressively shows during the search. Here, a novel algorithm is presented for the incorporation of user preferences in an image retrieval system based exclusively on the visual content of the image, which is stored as a vector of low-level features. The algorithm considers the probability of an image belonging to the set of those sought by the user, and models the logit of this probability as the output of a linear model whose inputs are the low level image features. The image database is ranked by the output of the model and shown to the user, who selects a few positive and negative samples, repeating the process in an iterative way until he/she is satisfied. The problem of the small sample size with respect to the number of features is solved by adjusting several partial linear models and combining their relevance probabilities by means of an ordered weighted averaged (OWA) operator. Experiments were made with 40 users and they exhibited good performance in finding a target image (4 iterations on average) in a database of about 4700 imagesZuccarello, PD. (2007). Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems. http://hdl.handle.net/10251/12196Archivo delegad

    Físchlár-TRECVid2004: Combined text- and image-based searching of video archives

    Get PDF
    The Fischlar-TRECVid-2004 system was developed for Dublin City University's participation in the 2004 TRECVid video information retrieval benchmarking activity. The system allows search and retrieval of video shots from over 60 hours of content. The shot retrieval engine employed is based on a combination of query text matched against spoken dialogue combined with image-image matching where a still image (sourced externally), or a keyframe (from within the video archive itself), is matched against all keyframes in the video archive. Three separate text retrieval engines are employed for closed caption text, automatic speech recognition and video OCR. Visual shot matching is primarily based on MPEG-7 low-level descriptors. The system supports relevance feedback at the shot level enabling augmentation and refinement using relevant shots located by the user. Two variants of the system were developed, one that supports both text- and image-based searching and one that supports image only search. A user evaluation experiment compared the use of the two systems. Results show that while the system combining text- and image-based searching achieves greater retrieval effectiveness, users make more varied and extensive queries with the image only based searching version

    Content-based Image Retrieval using Color and Geometry

    Get PDF
    The increased need of content based image retrieval technique can be found in a number of different domains such as Data Mining, Education, Medical Imaging, Crime Prevention, Weather forecasting, Remote Sensing and Management of Earth Resources. With the development of Multimedia data types and heavy increase in available bandwidth, there’s a huge demand of Image Retrieval system Content based image retrieval system uses color and geometry means to store, retrieve, sort and print any combinations of the images. The retrieval of images is, for the majority of search engines, available for collecting data from the image, this can be an image file name, html tags and surrounding text. This left the actual image more or less ignored. CBIR uses methods that analyze the actual bits and pieces i.e. color, shape, texture and spatial layout. There have been different approaches such as feature extraction, indexing and retrieval process. One approach is to make an attempt to classify the image into a more textual described context. With the image classified, it can be retrieved using more traditional and better retrieval methods. Our system Content Based Image Retrieval which is based on color and geometry, the system exactly does feature extraction in first step by using color, texture and shape (geometry) on images which gives there features which can be used to classify the image into different groups using distance formulas. Also the system gives relevant images as well as irrelevant images. The project thus going to work on relevance feedback of user which helps to improve the overall results

    Semantic image retrieval using relevance feedback and transaction logs

    Get PDF
    Due to the recent improvements in digital photography and storage capacity, storing large amounts of images has been made possible, and efficient means to retrieve images matching a user’s query are needed. Content-based Image Retrieval (CBIR) systems automatically extract image contents based on image features, i.e. color, texture, and shape. Relevance feedback methods are applied to CBIR to integrate users’ perceptions and reduce the gap between high-level image semantics and low-level image features. The precision of a CBIR system in retrieving semantically rich (complex) images is improved in this dissertation work by making advancements in three areas of a CBIR system: input, process, and output. The input of the system includes a mechanism that provides the user with required tools to build and modify her query through feedbacks. Users behavioral in CBIR environments are studied, and a new feedback methodology is presented to efficiently capture users’ image perceptions. The process element includes image learning and retrieval algorithms. A Long-term image retrieval algorithm (LTL), which learns image semantics from prior search results available in the system’s transaction history, is developed using Factor Analysis. Another algorithm, a short-term learner (STL) that captures user’s image perceptions based on image features and user’s feedbacks in the on-going transaction, is developed based on Linear Discriminant Analysis. Then, a mechanism is introduced to integrate these two algorithms to one retrieval procedure. Finally, a retrieval strategy that includes learning and searching phases is defined for arranging images in the output of the system. The developed relevance feedback methodology proved to reduce the effect of human subjectivity in providing feedbacks for complex images. Retrieval algorithms were applied to images with different degrees of complexity. LTL is efficient in extracting the semantics of complex images that have a history in the system. STL is suitable for query and images that can be effectively represented by their image features. Therefore, the performance of the system in retrieving images with visual and conceptual complexities was improved when both algorithms were applied simultaneously. Finally, the strategy of retrieval phases demonstrated promising results when the query complexity increases
    corecore