26,348 research outputs found

    Content-Based Weak Supervision for Ad-Hoc Re-Ranking

    Full text link
    One challenge with neural ranking is the need for a large amount of manually-labeled relevance judgments for training. In contrast with prior work, we examine the use of weak supervision sources for training that yield pseudo query-document pairs that already exhibit relevance (e.g., newswire headline-content pairs and encyclopedic heading-paragraph pairs). We also propose filtering techniques to eliminate training samples that are too far out of domain using two techniques: a heuristic-based approach and novel supervised filter that re-purposes a neural ranker. Using several leading neural ranking architectures and multiple weak supervision datasets, we show that these sources of training pairs are effective on their own (outperforming prior weak supervision techniques), and that filtering can further improve performance.Comment: SIGIR 2019 (short paper

    Share your Model instead of your Data: Privacy Preserving Mimic Learning for Ranking

    Get PDF
    Deep neural networks have become a primary tool for solving problems in many fields. They are also used for addressing information retrieval problems and show strong performance in several tasks. Training these models requires large, representative datasets and for most IR tasks, such data contains sensitive information from users. Privacy and confidentiality concerns prevent many data owners from sharing the data, thus today the research community can only benefit from research on large-scale datasets in a limited manner. In this paper, we discuss privacy preserving mimic learning, i.e., using predictions from a privacy preserving trained model instead of labels from the original sensitive training data as a supervision signal. We present the results of preliminary experiments in which we apply the idea of mimic learning and privacy preserving mimic learning for the task of document re-ranking as one of the core IR tasks. This research is a step toward laying the ground for enabling researchers from data-rich environments to share knowledge learned from actual users' data, which should facilitate research collaborations.Comment: SIGIR 2017 Workshop on Neural Information Retrieval (Neu-IR'17)}{}{August 7--11, 2017, Shinjuku, Tokyo, Japa

    Efficient Document Re-Ranking for Transformers by Precomputing Term Representations

    Full text link
    Deep pretrained transformer networks are effective at various ranking tasks, such as question answering and ad-hoc document ranking. However, their computational expenses deem them cost-prohibitive in practice. Our proposed approach, called PreTTR (Precomputing Transformer Term Representations), considerably reduces the query-time latency of deep transformer networks (up to a 42x speedup on web document ranking) making these networks more practical to use in a real-time ranking scenario. Specifically, we precompute part of the document term representations at indexing time (without a query), and merge them with the query representation at query time to compute the final ranking score. Due to the large size of the token representations, we also propose an effective approach to reduce the storage requirement by training a compression layer to match attention scores. Our compression technique reduces the storage required up to 95% and it can be applied without a substantial degradation in ranking performance.Comment: Accepted at SIGIR 2020 (long

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    Deeper Text Understanding for IR with Contextual Neural Language Modeling

    Full text link
    Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited.Comment: In proceedings of SIGIR 201

    Investigating Retrieval Method Selection with Axiomatic Features

    Get PDF
    We consider algorithm selection in the context of ad-hoc information retrieval. Given a query and a pair of retrieval methods, we propose a meta-learner that predicts how to combine the methods' relevance scores into an overall relevance score. Inspired by neural models' different properties with regard to IR axioms, these predictions are based on features that quantify axiom-related properties of the query and its top ranked documents. We conduct an evaluation on TREC Web Track data and find that the meta-learner often significantly improves over the individual methods. Finally, we conduct feature and query weight analyses to investigate the meta-learner's behavior
    • …
    corecore